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Abstract

Stochastic complexity of a data set is defined as the shortest possible
code length for the data obtainable by using some fixed set of models.
This measure is of great theoretical and practical importance as a tool
for tasks such as model selection and data clustering. Unfortunately
straightforward computation of this measure requires exponential time
with respect to the size of the data. The purpose of this paper is to ana-
lyze the connection between the stochastic complexity and so-called tree
polynomials, and to show that this connection provides a novel, useful
framework for understanding the theoretical and practical properties of
the stochastic complexity. As a concrete example of the usefulness of
this framework, we show how the tree polynomials can be used to derive
recursion formulas for efficient computation of the stochastic complex-
ity in the case of n observations of a single multinomial random variable
with K values. The time complexity of the new formula is O (n + K) as
opposed to O

(

n2 log K
)

obtained with previous results. Moreover, we
present an approximation algorithm which works in time O (K), while
still providing extremely accurate results with large sample sizes.

1 Introduction

Minimum encoding length principle performs induction by seeking a theory that allows the
most compact encoding of both the theory and available data. Intuitively speaking, this
approach can be argued to produce the best possible model of the problem domain, since in
order to be able to produce the most efficient coding, one must capture all the regularities
present in the domain. Consequently, the minimum encoding approach can be used for
constructing a solid theoretical framework for statistical modeling.

The most well-founded formalization of the minimum encoding approach is the Minimum
Description Length (MDL) principle developed by Rissanen [1, 2, 3]. The main idea of
this principle is to represent a set of models (model class) by a single model imitating the
behaviour of any model in the class. Such representative models are called universal. The
universal model itself does not have to belong to the model class as often is the case. Unlike
some other approaches, like for example Bayesianism, the MDL principle does not assume



that the chosen model class is correct. It even says that there is no such thing as a true
model or model class, as acknowledged by many practitioners. The model class is only
used as a technical device for constructing an efficient code. For more discussion on the
theoretical motivations behind the MDL see, e.g., [3, 4, 5, 6, 7, 8].

The most important notion of the MDL is the stochastic complexity, which is the shortest
description length of a given data relative to a given model class (set of models). The exact
definition of the stochastic complexity is based on the Normalized Maximum Likelihood
(NML) distribution described in [9, 3]. For multinomial (discrete) data, this definition
involves an exponential sum over all the possible data matrices of fixed size. This sum is
called the regret, and it can be interpreted as a penalty term for the complexity of the model
class.

Our previous work [10, 11, 12] focused on finding efficient algorithms for computing the
regret. Although we were able to remove the exponentiality of the regret sum, even fastest
of the algorithms was still superlinear with respect to the size of the data, which makes
the algorithms infeasible for large or even moderate size data sets. The topic of this paper
is to present a novel theoretical framework for analyzing the properties of the regret. This
framework is based on the tree polynomials introduced in [13]. We will apply the properties
of these polynomials to derive a linear time regret computation algorithm for multinomial
data. Furthermore, we will construct an alternative proof for the recursive regret formula
discussed earlier in [10, 11].

In Section 2 we introduce the notation and instantiate the NML distribution for the multino-
mial model class. We will also shortly discuss our previous work on the regret computation
methods. The topic of Section 3 is to derive the generating function for the sequence
of regret terms. This generating function turns out to be the key element for finding the
connection between the tree polynomials and the regret, which is discussed in Section 4.
The definition and basic properties of the tree polynomials are also reviewed there. Fur-
thermore, at the end of the section we will derive the new regret computation algorithms.
Finally, Section 5 gives the concluding remarks and presents some ideas for future work.

2 Multinomial NML

Consider a discrete data set (or matrix) x
n = (x1, . . . ,xn) of n outcomes, and let θ̂(xn)

denote the maximum likelihood estimate of data x
n. The minimax optimal Normalized

Maximum Likelihood (NML) distribution [9] is now defined as

PNML(xn | M) =
P (xn | θ̂(xn),M)

Rn
M

, (1)

where the regret Rn
M relative to a model class M is given by

Rn
M =

∑

x
n

P (xn | θ̂(xn),M), (2)

and the sum goes over all the possible data matrices of size n. Definition (1) is intuitively
very appealing: every data matrix is modeled using its own maximum likelihood (i.e.,
best fit) model, and then a penalty for the complexity of the model class M is added to
normalize the distribution.

Our previous work on regret computation methods [10, 11, 12] focused on two model
classes. In the first case, the problem domain consisted of a single multinomial variable.
The second one was a multi-dimensional generalization, which was shown to be suitable
for, e.g. data clustering. In the following, we will concentrate on the single-dimensional
case. We believe, however, that the methods presented in the current work will also gener-
alize to the multi-dimensional case.



In the single-dimensional case we assume that our problem domain consists of a discrete
random variable X with K values, and that our data x

n is multinomially distributed. The
corresponding model class, which we denote by MK , is defined via the following simplex-
shaped parameter space:

{(θ1, . . . , θK) : θv ≥ 0, θ1 + · · ·+ θK = 1}, where θv = P (X = v), v = 1, . . . ,K. (3)

The NML distribution for the MK model class is given by (see, e.g., [10, 11])

PNML(xn | MK) =

∏K
v=1

(

hv

n

)hv

Rn
MK

, (4)

where hv is the frequency of value v in x
n, and

Rn
MK

=
∑

x
n

P (xn | θ̂(xn),MK) (5)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

(

h1

n

)h1

· · ·

(

hK

n

)hK

. (6)

Looking at (5) it is clear that the regret Rn
MK

involves a sum over Kn terms. In [10, 11]
we presented a recursion formula for removing the exponentiality of (5):

Rn
MK1+K2

=

n
∑

k=0

n!

k!(n − k)!

(

k

n

)k (
n − k

n

)n−k

Rk
MK1

Rn−k
MK2

, (7)

which holds for all K1,K2 ≥ 1. A straightforward algorithm based on this formula
from [10, 11] was used to compute the regret Rn

MK
in time O

(

n2 log K
)

. In [14, 12, 15]
this was improved to O (n log n log K) by writing the regret as a convolution sum and then
using the Fast Fourier algorithm. However, the practical relevance of the latter result is
unclear due to numerical instability problems it easily produces.

Although our previous regret computation algorithms are efficient enough to allow the use
of NML for moderately sized datasets, they are still superlinear with respect to n. In the
next two sections we will introduce a novel framework for analyzing the properties of the
multinomial regret, which will eventually lead to a linear time algorithm.

3 The Regret Generating Function

The relation between the regret terms and tree polynomials is based on the similarity of
their generating functions. In this section we will start the discussion of this relation by
finding the generating function for the sequence of regret terms. Our derivation mostly
follows [16], where a similar problem was studied.

One of the most powerful ways to analyze a sequence of numbers is to form a power se-
ries with the elements of the sequence as coefficients. The resulting function is called the
generating function of the sequence. Generating functions can be seen as a bridge between
discrete mathematics and continuous analysis. They can be used for finding recurrence
formulas and asymptotic expansions, proving combinatorial identities and finding statis-
tical properties of a sequence. Good sources for further reading on generating functions
are [17, 18, 19, 20].

The (ordinary) generating function of a sequence 〈an〉 = (a0, a1, a2, . . .) is defined as a
series

A(z) =
∑

n≥0

anzn, (8)



where z is a dummy symbol (or a complex variable). The importance of generating func-
tions is that the function A(z) is a representation of the whole sequence 〈an〉. By studying
this function we can get important information about the sequence, such as the asymptotic
form of the coefficients.

To start the derivation of the generating function for the regret terms let us consider the
sequence 〈nn/n!〉. As in [16], we denote the function generating this sequence by B(z).
Although there is no closed-form formula for B(z), we will soon see that this function is
nevertheless a suitable starting point. In order to find the connection between B(z) and the
regret terms, we square B(z), which yields

B2(z) =





∑

h1≥0

hh1

1

h1!
zh1



 ·





∑

h2≥0

hh2

2

h2!
zh2



 (9)

=
∑

h1,h2≥0

hh1

1 hh2

2

h1!h2!
zh1+h2 (10)

=
∑

n≥0

(

∑

h1+h2=n

nn

n!

n!

h1!h2!

hh1

1 hh2

2

nh1+h2

)

zn (11)

=
∑

n≥0

nn

n!

(

∑

h1+h2=n

n!

h1!h2!

(

h1

n

)h1
(

h2

n

)h2

)

zn (12)

=
∑

n≥0

nn

n!
Rn

M2
zn, (13)

where the last equality follows from (5). Thus, we have proven that the function B2(z)

generates the sequence 〈nn

n! R
n
M2

〉. It is now straightforward to generalize this to

BK(z) =
∑

n≥0

nn

n!

[

∑

h1+···+hK=n

n!

h1! · · ·hK !

(

h1

n

)h1

· · ·

(

hK

n

)hK

]

zn (14)

=
∑

n≥0

nn

n!
Rn

MK
zn, (15)

which generates 〈nn

n! R
n
MK

〉. Consequently, BK(z) is the sought-for function and we call
it the regret generating function.

As mentioned above, there is no closed-form formula for B(z) and little is known about the
function. Therefore, as in [16], we will write the function BK(z) in a different, more useful
form using the so-called Cayley’s tree function T (z) [21, 13, 22, 23], which generates the
sequence 〈nn−1/n!〉, i.e.,

T (z) =
∑

n≥1

nn−1

n!
zn. (16)

This sequence counts the rooted labeled trees, hence the name of the function. A basic
property of the tree function is the functional equation

T (z) = zeT (z), (17)

which we will make use of below.

To show the connection between T (z) and B(z), following [16] we first differentiate and



multiply (16) by z, which gives

zT ′(z) = z ·
∑

n≥1

n · nn−1

n!
zn−1 (18)

=
∑

n≥0

nn

n!
zn − 1, (19)

from which it easily follows that

B(z) = zT ′(z) + 1. (20)

On the other hand, differentiating the functional equation (17) yields

zT ′(z) =
T (z)

1 − T (z)
. (21)

Finally, combining (20) and (21) leads to

B(z) =
T (z)

1 − T (z)
+ 1 =

1

1 − T (z)
, (22)

and thus the regret generating function BK(z) can be written as

BK(z) =
1

(1 − T (z))K
. (23)

4 Tree Polynomials

The topic of this section is to present the elegant connection between the multinomial regret
terms and so-called tree polynomials introduced in [13]. This connection has both theoreti-
cal and practical merits. On the theoretical side, it provides another framework or view for
analyzing the properties of multinomial NML. An immediate practical consequence of the
connection is the linear time algorithm for computing the regret derived at the end of this
section.

We start the discussion by defining the tree polynomials tn [13] by the means of their
generating function

1

(1 − T (z))y
=
∑

n≥0

tn(y)
zn

n!
, (24)

where y is a real number and T (z) is the tree function discussed in the previous section. The
coefficient of yk in tn(y) has a combinatorial interpretation: it is the number of mappings
from an n-element set into itself having exactly k cycles. In practice, the tree polynomials
can be found via recurrence

tn(y − 2) =
y − 2

n

n
∑

k=1

(

n

k

)

kk−1tn−k(y), (25)

from which tn can be obtained when tn−1, . . . , t0 are known [13]. The first few tree poly-
nomials are given by

t0(y) = 1, (26)
t1(y) = y, (27)

t2(y) = y2 + 3y, (28)

t3(y) = y3 + 9y2 + 17y, (29)

t4(y) = y4 + 18y3 + 95y2 + 142y. (30)



The connection to the multinomial regret terms comes from the fact that for positive integer
values of y, the generating functions (24) and (23) are the same. Thus, by comparing the
coefficients of zn in both cases we get

nn

n!
Rn

MK
=

tn(K)

n!
(31)

Rn
MK

=
tn(K)

nn
, (32)

for positive integers K. Consequently, the nth tree polynomial tn is an elegant, compact
representation of the infinite regret sequence (Rn

M1
,Rn

M2
, . . .), i.e. this polynomial can

be used to evaluate the regret for all the values of K when n is fixed.

Having now established the connection, we can use all the properties of the tree polyno-
mials for finding new facts about the regret terms. As a first example, we will consider an
interesting relation between the binary regret and Ramanujan’s Q-function [13, 23], which
is used in the analysis of algorithms and several discrete probability problems, such as
hashing, union-find algorithms, caching and integer factorization. We have

Rn
M2

= 1 + Q(n), (33)

where

Q(n) = 1 +
n − 1

n
+

(n − 1)(n − 2)

n2
+ · · · (34)

is the Ramanujan’s Q-function. The proof of (33) follows immediately from (32) and from
the formula (see [13])

tn(2) = nn(Q(n) + 1). (35)

Now we get to the computational aspects of the tree polynomials. Although the coefficients
of the tree polynomials can be obtained from (25), that process would not be efficient with
respect to the regret computation. Fortunately, it turns out that there is no need to find the
actual tree polynomials. To illustrate this, we will derive two recursion formulas for the
regret terms using the tree polynomials. The first one is (7), which is originally from [11].
We start with a basic convolution property of the tree polynomials from [13],

tn(y1 + y2) =

n
∑

k=0

(

n

k

)

tk(y1)tn−k(y2). (36)

By using (32), we can now write

nn · Rn
MK1+K2

=

n
∑

k=0

(

n

k

)

kk(n − k)n−kRk
MK1

Rn−k
MK2

, (37)

from which (7) easily follows.

Another tree polynomial formula from [13], derived below, leads to a linear time regret
computation algorithm. As in [13], we start by considering

z ·
d

dz

∑

n≥0

tn(y − 1)
zn

n!
= z ·

∑

n≥1

ntn(y − 1)
zn−1

n!
(38)

=
∑

n≥0

ntn(y − 1)
zn

n!
. (39)



On the other hand, by differentiating the generating function (24) and applying (21), we
have

z ·
d

dz

1

(1 − T (z))y−1
=

z(y − 1)

(1 − T (z))y
· T ′(z) (40)

=
y − 1

(1 − T (z))y

T (z)

(1 − T (z))
(41)

= (y − 1)

(

1

(1 − T (z))y+1
−

1

(1 − T (z))y

)

(42)

= (y − 1)





∑

n≥0

tn(y + 1)
zn

n!
−
∑

n≥0

tn(y)
zn

n!



 . (43)

Comparing the coefficients of zn in (39) and (43), we get

ntn(y − 1) = (y − 1)(tn(y + 1) − tn(y)), (44)

tn(y + 1) = tn(y) +
ntn(y − 1)

y − 1
, (45)

from which we get the final regret recursion

Rn
MK

= Rn
MK−1

+
n

K − 2
Rn

MK−2
, (46)

which holds for all K > 2. It is now straightforward to write a linear-time algorithm
based on (46). The computation starts with the trivial case Rn

M1
≡ 1. Next, the old

recursion formula (37) is used to compute Rn
M2

in time O (n). Finally, recursion (46) is
applied K − 2 times to end up with Rn

MK
. The time complexity of the whole computation

is O (n + K), which is a major improvement over the previous methods.

Finally, it should be noted that since the time complexity of the above formula is domi-
nated by the binary case, an additional speedup is possible by using an approximation for
computing the Rn

M2
term. In [10] we presented an extremely accurate, constant time regret

approximation based on the generating function (23). The error of the approximation was
shown to go down with the rate O

(

1/n3/2
)

, which means that the approximation is accu-
rate enough for all the practical purposes. By using this approximation, the time complexity
of computing Rn

MK
drops to O (K).

5 Conclusion And Future Work

In this paper we have presented a novel framework for analyzing the properties of the
multinomial NML distribution by connecting the regret and tree polynomials. Since poly-
nomials are obviously much easier to understand and analyze than the complicated sum of
combinatorial terms present in the definition of the NML, this connection will provide the
researchers of the NML an alternative, more intuitive framework. As a practical demon-
stration of the usefulness of this framework, we derived the first linear time algorithm for
computing the exponential regret sum.

In the future, our plan is to study theoretical properties of the regret more extensively via
tree polynomials. Another natural topic is to extend the current work to more complex
cases such as the clustering model class studied in our previous work. Even if it turns out
that the regret generating function is not available in these cases, we believe that the current
framework might still be useful in, e.g., deriving accurate approximations.
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