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Abstract

We regard clustering as a data assignment problem where the goal is to
partition the data into several non-hierarchical groups of items. For solv-
ing this problem, we suggest an information-theoretic framework based on
the minimum description length (MDL) principle. Intuitively, the idea is
that we group together those data items that can be compressed well to-
gether, so that the total code length over all the data groups is optimized.
One can argue that as efficient compression is possible only when one has
discovered underlying regularities that are common to all the members
of a group, this approach produces an implicitly defined similarity metric
between the data items. Formally the global code length criterion to be
optimized is defined by using the intuitively appealing universal normal-
ized maximum likelihood code which has been shown to produce optimal
compression rate in an explicitly defined manner. The number of groups
can be assumed to be unknown, and the problem of deciding the opti-
mal number is formalized as part of the same theoretical framework. In
the empirical part of the paper we present results that demonstrate the
validity of the suggested clustering framework.

1 Introduction

Clustering is one of the central concepts in the field of unsupervised data anal-
ysis. Unfortunately it is also a very controversial issue, and the very meaning
of the concept “clustering” may vary a great deal between different scientific
disciplines (see, e.g., [15] and the references therein). However, a common goal
in all cases is that the objective is to find a structural representation of data
by grouping (in some sense) similar data items together. In this work we want
to distinguish the actual process of grouping the data items from the more
fundamental issue of defining a criterion for deciding which data items belong
together, and which do not.

In the following we regard clustering as a partitional data assignment or data
labeling problem, where the goal is to partition the data into mutually exclusive



clusters so that similar (in a sense that needs to be defined) data vectors are
grouped together. The number of clusters is unknown, and determining the
optimal number is part of the clustering problem. The data is assumed to be
in a vector form so that each data item is a vector consisting of a fixed number
of attribute values.

Traditionally this problem has been approached by first fixing a distance
metric, and then by defining a global goodness measure based on this distance
metric — the global measure may for example punish a clustering for pair-
wise intra-cluster distances between data vectors, and reward it for pairwise
inter-cluster distances. However, although this approach is intuitively quite
appealing, from the theoretical point of view it introduces many problems.

The main problem concerns the distance metric used: the task of formally
describing the desirable properties of a suitable similarity metric for clustering
has turned out to be a most difficult task. Commonly used distance metrics
include the Euclidean distance and other instances from the Minkowski metric
family. However, although these types of metrics may produce reasonable results
in cases where the the underlying clusters are compact and isolated, and the
domain attributes are all continuous and have a similar scale, the approach faces
problems in more realistic situations [22]. As discussed in [18], non-continuous
attributes pose another severe problem. An obvious way to try to overcome
this problem is to develop data preprocessing techniques that essentially try to
map the problem in the above setting by different normalization and scaling
methods. Yet another alternative is to resort to even more exotic distance
metrics, like the Mahalanobis distance. However, deciding between alternative
distance metrics is extremely difficult, since although the concept of a distance
metric is intuitively quite understandable, the properties of different distance
metrics are far from it [1].

A completely different approach to clustering is offered by the model-based
approach, where for each cluster a data generating function (a probability distri-
bution) is assumed, and the clustering problem is defined as the task to identify
these distributions (see, e.g., [35, 11, 5]). In other words, the data is assumed
to be generated by a finite mixture model [10, 36, 23]. In this framework the
optimality of a clustering can be defined as a function of the fit of data with
the finite mixture model, not as a function of the distances between the data
vectors.

However, the difference between the distance-based and model-based ap-
proaches to clustering is not as fundamental as one might think at a first glance.
Namely, it is well known that if one, for example, uses the squared Mahalanobis
distance in clustering, then this implicitly defines a model-based approach based
on Gaussian distributions. A general framework for mapping arbitrary distance
functions (or loss functions) to probability distributions is presented in [13]. The
reverse holds of course as well: any explicitly defined probabilistic model can
be seen to implicitly generate a distance measure. Consequently, we have two
choices: we can either explicitly define a distance metric, which produces an
implicitly defined probability distribution, or we can explicitly define a proba-
bilistic model, which implicitly defines a distance metric. We favor the latter



alternative for the reasons discussed below.

One of the main advantages of the model-based approach is that the explicit
assumptions made correspond to concepts such as independence, linearity, uni-
modality etc., that are intuitively quite understandable. Consequently, we can
argue that constructing a sensible model is easier than constructing a mean-
ingful distance metric. Another important issue is that the modern statistical
machine learning community has developed several techniques for automated
selection of model complexity. This means that by explicitly defining the model
assumptions, one can address the problem of deciding the optimal number of
clusters together with the problem of assigning the data vectors to the clusters.

Nevertheless, although the modeling approach has many advantages, it also
introduces some problems. First of all, the finite mixture model implicitly as-
sumes the existence of a hidden clustering variable, the values of which are
unknown by definition. Evaluating probabilistic models in this type of an in-
complete data case is difficult, and one needs to resort to approximations of
theoretically derived model selection criteria. Furthermore, it can also be ar-
gued that if the fundamental goal is to find a data partitioning, then it is some-
what counter-intuitive to define the objective of clustering primarily as a model
search problem, since clustering is a property of the data, not of the model.
Furthermore, if one is really interested in the model, and not a partition, then
why restrict oneself to a simple finite mixture model. Bayesian or probabilis-
tic networks, for instance, offer a rich family of models that extend the simple
mixture model [20, 14, 7]. A typical survey of users of the Autoclass system [5]
shows that they start out using clustering, start noticing certain regularities,
and then switch over to some custom system. When the actual goal is broader
knowledge discovery, model-based clustering is often too simple an approach.

The model-based approach of course implicitly leads to clustering, as the
mixture components can be used to compute the probability of any data vector
originating from that source. Hence, a mixture model can be used to produce
a “soft” clustering where each data vector is assigned to different clusters with
some probability. Nevertheless, for our purposes it is more useful to consider
“hard” data assignments, where each data vector belongs to exactly one cluster
only. In this case we can compute in practice some theoretically interesting
model selection criteria, as we shall later see. In addition, it can be argued that
this type of hard assignments match more naturally to the human intuition
on clustering, where the goodness of a clustering depends on how the data is
globally balanced among the different clusterings [16].

In this paper we propose a model selection criterion for clustering based on
the idea that a good clustering is such that one can encode the clustering together
with the data so that the resulting code length is minimized. In the Bayesian
modeling framework this means regarding clustering as a missing data problem,
and choosing the clustering (assignment of missing data) maximizing the joint
probability. As code lengths and probabilities are inherently linked to each other
(see e.g. [6]), these two perspectives are just two sides of the same coin. But in
order to formalize this clustering criterion, we need to explicitly define what we
mean by minimal code length / maximal probability. In the Bayesian setting



optimality is usually defined with respect to some prior distribution, with the
additional assumption that the data actually comes from one of the models
under consideration.

The main problem with the Bayesian model-based approach for clustering
stems from the fact that it implicitly assumes the existence of a latent “cluster-
ing variable”, the values of which are the missing values that we want to find
in clustering. We claim that determining an informative prior for this latent
variable is problematic, as the variable is by definition “hidden”! For example,
think of a data set of web log data collected at some WWW site. A priori, we
have absolutely no idea of how many underlying clusters of users there exist
in the data, or what are the relative sizes of these clusters. What is more, we
have also very little prior information about the class-conditional distributions
within each cluster: we can of course compute for example the population mean
of, say, the age of the users, but does that constitute a good prior for the age
within different clusters? We argue that it does not, as what we intuitively are
looking for in clustering is discriminative clusters that differ not only from each
other, but also from the population as a whole.

The above argument leads to the following conclusion: the Bayesian ap-
proach to clustering calls for non-informative (objective) priors that do not in-
troduce any involuntary bias in the process. Formally this can be addressed as
a problem for defining so called reference priors [3]. However, current methods
have technical difficulties at the boundaries of the parameter space of the prob-
abilistic model used [3]. To overcome this problem, we suggest an information-
theoretic framework for clustering, based on the Minimum Description Length
(MDL) principle [25, 26, 28], which leads to an objective criterion in the sense
that it is not dependent on any prior distribution, it only uses the data at hand.
Moreover, it also has an interpretation as a Bayesian method w.r.t. a worst case
prior, and is thus a finite sample variant of the reference prior. It should also
be noted that the suggested optimality criterion based on the MDL approach
does not assume that the data actually comes from the probabilistic model class
used for formalizing the MDL principle — this is of course a sensible property
in all realistic situations.

In summary, our approach is essentially model-based as it requires an explicit
probabilistic model to be defined, no explicit distance metric is assumed. This is
in sharp contrast to the information-theoretic approaches suggested in [12, 34],
which are essentially distance-based clustering frameworks, where the distance
metric is derived from information-theoretic arguments. As discussed above,
with respect to the standard model-based Bayesian approach, our approach
differs in that the objectivity is approached without having to define an explicit
prior for the model parameters.

The clustering criterion suggested here is based on the MDL principle which
intuitively speaking aims at finding the shortest possible encoding for the data.
For formalizing this intuitive goal, we adopt the modern normalized mazimum
likelihood (NML) coding approach [33], which can be shown to lead to a criterion
with very desirable theoretical properties (see e.g. [28, 2, 13, 29, 39, 30] and the
references therein). It is important to realize that approaches based on either



earlier formalizations of MDL, or on the alternative Minimum Message Length
(MML) encoding framework [37, 38], or on more heuristic encoding schemes
(see e.g. [31, 9, 24, 21]) do not possess these theoretical properties!

The work reported in [8] is closely related to our work as it addresses the
problem of segmenting binary strings, which essentially is clustering (albeit in a
very restricted domain). The crucial difference is that in [8] the NML criterion
is used for encoding first the data in each cluster, and the clustering itself (i.e.,
the cluster labels for each data item) is then encoded independently, while in
the clustering approach suggested in Section 2 all the data (both the data in the
clusters plus the cluster indexes) is encoded together. Another major difference
is that the work in [8] concerns binary strings, i.e., ordered sequences of data,
while we study unordered sets of data. Finally, the computational method used
in [8] for computing the NML is computationally feasible only in the simple
binary case — in Section 4 we present a recursive formula that allows us the
compute the NML exactly also in more complex, multi-dimensional cases.

This paper is structured as follows. In Section 2 we introduce the notation
and formalize clustering as a data assignment problem. The general motivation
for the suggested information-theoretic clustering criterion is also discussed. In
Section 3 the theoretical properties of the suggested criterion are discussed in
detail. Section 4 focuses on computational issues: we show how the suggested
MDL clustering criterion can be computed efficiently for a certain interesting
probabilistic model class. The clustering criterion has also been validated em-
pirically: illustrative examples of the results are presented and discussed in
Section 5. Section 6 summarizes the main results of our work.



2 The clustering problem

2.1 Clustering as data partitioning

Let us consider a data set x™ = {x1,...,X,} consisting of n outcomes (vectors),
where each outcome x; is an element of the set X. The set X consists of all
the vectors of the form (a1, ..., an), where each variable (or attribute) a; takes

on values on some set that can be either a continuum of real numbers, or a
finite set of discrete values. A clustering of the data set x™ is here defined as
a partitioning of the data into mutually exclusive subsets, the union of which
forms the data set. The number of subsets is a priori unknown. The clustering
problem is the task to determine the number of subsets, and to decide to which
cluster each data vector belongs.

Formally, we can notate a clustering by using a clustering vector y™ =
(y1,---,Yn), where y; denotes the index of the cluster to which the data vector
x; is assigned to. The number of clusters K is implicitly defined in the cluster-
ing vector, as it can be determined by counting the number of different values
appearing in y™. It is reasonable to assume that K is bounded by the size of
our data set, so we can define the clustering space 2 as the set containing all
the clusterings y™ with the number of clusters being less than n. Hence the

clustering problem is now to find from all the y™ € Q the optimal clustering

y™.

For solving the clustering problem we obviously need a global optimization
criterion that can be used for comparing clusterings with different number of
clusters. On the other hand, as the clustering space € is obviously exponential
in size, in practice we need to resort to combinatorial search algorithms in our
attempt to solve the clustering problem. We return to this issue in Section 5. In
the following we focus on the more fundamental issue: what constitutes a good
optimality criterion for choosing among different clusterings? To formalize this,
we first need to explicate the type of probabilistic models we consider.

2.2 Model class

Consider a set ® € R?. A class of parametric distributions indexed by the
elements of © is called a model class. That is, a model class M 1is defined as

M ={P(-]9) : 0 € ©}. (1)
In the following, we use the simple finite mixture as the model class. In this
case, the probability of a data vector is given by

K
P(x | Mk) =) P(x|y=k Mg)P(y = k| M), (2)
k=1
so that a parametric model 8 is a weighted mixture of K component models
each determining the local parameters P(x | y = k, Mk) and P(y = k | Mk).



Furthermore, as is usually done in mixture modeling, we assume that the vari-

ables (ay,...,a;) are locally (conditionally) independent:
P(x |y =k Mx) = [[ Pla: | y = k, M). (3)
i=1

The above assumes that the parameter K is fixed. As discussed above, the
number of clusters can be assumed to be bounded by the size of the available
data set, so in the following we consider the union of model classes My, ..., M,,.

The finite mixture model class is used as an illustrative example in this
paper, but it should be noted that the general clustering framework applies of
course for other model classes as well. The benefit of the above simple mixture
model class is that while it allows arbitrary complex global dependencies with
increasing number of components K, from the data mining or data exploration
point of view this model class is very appealing as this type of local independence
models are very easy to understand and explain.

For the remainder of this paper, we make also the following restricting as-
sumption: we assume that the data is discrete, not continuous, and that the pos-
sibly originally continuous variables are discretized (in one manner or the other).
One reason for this is that in this case we can model the domain variables by
multinomial distributions without having to make restricting assumptions about
unimodality, normality etc., which is the situation we face in the continuous
case. Besides, discrete data is typical to domains such as questionnaire or web
log data analysis, and the demand for this type of analysis is increasing rapidly.
Moreover, as we shall see in Section 4, by using certain computational tricks, in
the multinomial case we can compute the theoretically derived objective func-
tion presented in the next section exactly, without resorting to approximations.
Nevertheless, the information-theoretic framework presented in this paper can
be easily extended to cases with continuous variables, or to cases with both
continuous and discrete variables.

2.3 Clustering criterion

Our optimality criterion for clustering is based on information-theoretical ar-
guments, in particular on the Minimum Description Length (MDL) princi-
ple [25, 26, 28]. This also has a perspective from the Bayesian point of view,
discussed in more detail in Section 3. In the following we try to motivate our
approach on a more general level.

Intuitively, the MDL principle aims at finding the shortest possible encoding
for the data, in other words the goal is to find the most compressed representa-
tion of the data. Compression is possible by exploiting underlying regularities
found in the data — the more regularities found, the higher the compression
rate. Consequently, the MDL optimal encoding has found all the available regu-
larities in the data; if there would be an “unused” regularity, this could be used
for compressing the data even further.



What does this mean in the clustering framework? We suggest the following
criterion for clustering: the data vectors should be partitioned so that the vectors
belonging to the same cluster can be compressed well together. This means that
those data vectors that obey the same set of underlying regularities are grouped
together. In other words, the MDL clustering approach defines an implicit
multilateral distance metric between the data vectors.

How to formalize the above intuitively motivated MDL approach for clus-
tering? Let us start by noting the well-known fact about the fundamental
relationship between codes and probability distributions: for every probability
distribution P, there exists a code with a code length —log P(x) for all the
data vectors x, and for each code there is probability distribution P such that
—log P(x) yields the code length for data vector x (see [6]). This means that
we can compress a cluster efficiently, if our model class yields a high probability
for that set of data. Globally this means that we can compress the full data
set x™ efficiently, if P(x™ | M) is high. Consequently, in the finite mixture
framework discussed in Section 2.2, we can define the following optimization
problem: Find the model class Mk € M so that P(x™ | M) is maximized.

As discussed in the Introduction, the above model-based approach to cluster-
ing poses several problems. One problem is that this type of an incomplete data
probability is in this case difficult to compute in practice as the finite mixture
formulation (3) implicitly assumes the existence of a latent clustering variable
y. What is even more disturbing is the fact that actual clustering y™ has dis-
appeared from the formulation altogether, so the above optimization task does
not solve the clustering problem as defined in Section 2.1. For these reasons,
we suggest the following general optimality criterion for finding the optimal
clustering g™:

§" = argmax P(x",y" | M), (4)

where M is a probabilistic model class.

It is important to notice here is that in this suggested framework optimality
with respect to clustering is defined as a relative measure that depends on the
chosen model class M. We see no alternative to this: any formal optimality
criterion is necessarily based on some background assumptions. We consider it
very sensible that in this framework the assumptions must be made explicit in
the definition of the probabilistic model class M. In addition to this, although
we in this approach end up with an optimal data partitioning g™, which was
our goal, we can in this framework also compare different model classes with
respect to the question of how well they compress and partition the data.

From the coding point of view, definition (4) means the following: If one
uses separates codes for encoding the data in different clusters, then in order to
be able to decode the data, one needs to send with each vector the index of the
corresponding code to be used. This means that we need to encode not only
the data x™, but also the clustering y™, which is exactly what is done in (4).

Definition (4) is incomplete in the sense that it does not determine how the
joint data probability should be computed with the help of the model class M.
In the Bayesian framework this would be done by integrating over some prior



distribution over the individual parameter instantiations on M:
PGy | M) = [ PGy 6,0)P(0 | M)ab. (5)

As discussed in the Introduction, in the clustering framework very little can
be known about the model parameters a priori, which calls for objective (non-
informative) priors. Typical suggestions are the uniform prior, and the Jeffreys
prior. In our discrete data setting, the basic building block of the probability
in (4) is the Multinomial distribution. As the values of the clustering variable are
in our approach based on (4) known, not hidden, it follows that instead of a sum
as in (3), the joint likelihood of x, y reduces to a product of Multinomials. This
means that the (conjugate) prior P(6) is a product of Dirichlet distributions.
In the case of the uniform prior, all the individual Dirichlet distributions have
all the hyperparameters set to 1. As shown in [19], the Jeffreys prior is in this
case given by

6~ Di (% (;(m_nﬂ),...,% (;<n,._1)+1>>
m K ‘ 1 1
XHHDI(?...@), (6)

i=1 k=1

where n; denotes the number of values of variable a;, K is the number of
clusters, and m is the number of variables (not counting the clustering variable
y). Yet another possibility is to use the prior suggested in [4], which is given by

(T r m K . r r
QNDI(E,’E)EIEIDI(KTM,’K—M) (7)

Properties of this prior are discussed in [14]. Parameter 7 is the so called equiv-
alent sample size (ESS) parameter that needs to be determined. Unfortunately,
as can be seen in Section 5, the value of the equivalent sample size parameter
affects the behavior of the resulting clustering criterion a great deal, and we are
aware of no disciplined way for automatically determining the optimal value.

In the next section we discuss an information-theoretic framework where
the joint probability of the data and the clustering can be determined in an
objective manner without an explicit definition of a prior distribution for the
model parameters. In Section 5 this information-theoretic approach to clustering
is studied empirically and compared to the Bayesian alternatives.




3 Stochastic complexity and the minimum de-
scription length principle

The information-theoretic Minimum Description Length (MDL) principle de-
veloped by Rissanen [25, 26, 27, 28] offers a well-founded theoretical framework
for statistical modeling. Intuitively, the main idea of this principle is to repre-
sent a set of models (model class) by a single model imitating the behavior of
any model in the class. Such representative models are called universal. The
universal model itself does not have to belong to the model class as often is the
case.

The MDL principle is one of the minimum encoding approaches to statis-
tical modeling. The fundamental goal of the minimum encoding approaches is
compression of data. That is, given some sample data, the task is to find a
description or code of it such that this description uses the least number of sym-
bols, less than other codes and less than it takes to describe the data literally.
Intuitively speaking, in principle this approach can be argued to produce the
best possible model of the problem domain, since in order to be able to produce
the most efficient coding of data, one must capture all the regularities present
in the domain.

The MDL principle has gone through several evolutionary steps during the
last two decades. For example, the early realization of the MDL principle (the
two-part code MDL [25]) takes the same form as the Bayesian BIC criterion [32],
which has led some people to incorrectly believe that these two approaches are
equivalent. The latest instantiation of MDL discussed here is not directly related
to BIC, but to the formalization described in [28]. The difference between the
results obtained with the “modern” MDL and BIC can be in practice quite
dramatic, as demonstrated in [17].

Unlike some other approaches, like for example Bayesianism, the MDL prin-
ciple does not assume that the model class is correct. It even says that there
is no such thing as a true model or model class, as acknowledged by many
practitioners.

3.1 Stochastic complexity as normalized maximum likeli-
hood

The most important notion of MDL is the Stochastic Complezity (SC). Intu-
itively, stochastic complexity is defined as the shortest description length of a
given data relative to a model class. In the following we give the definition
of stochastic complexity, before giving its theoretical justification in the next
subsection.

Let 6(x™) denote the mazimum likelihood estimate of data x", i.e.,

H(x™) = ar%ergax{P(x"w, M)}. (8)

The stochastic complexity is then defined in terms of the likelihood evaluated

10



at its maximum P(x" | 0,M)|9:9(xn) as

P(x™ | eaM)Lg:é(xn)

CEx"| M) =—-log

Ry
—log P(x™ | 0, M)|p_g(xn) +log Ry, 9)
where R}, is given by
ZP ™10, M) g—ginys (10)

and the sum goes over all the possible data matrices of length n. The term log R},
is called the regret and since it depends on the length of data, not the data it-
self, it can be considered as a normalization term, and the distribution in (9)
is called normalized mazimum likelihood (NML) distribution proposed for finite
alphabets in [33]. The definition (9) is intuitively very appealing: every data
matrix is modeled using its own maximum likelihood (i.e. best fit) model, and
then a penalty for the complexity of the model class M is added to normalize
the distribution.

3.2 Normalized maximum likelihood as a two-part code

In its definitional form in (9), NML is not a two-part code because the log regret
is subtracted. To make this a two part code, we use the following interpretation:
the statistical event x™ can be broken down into two parts: the first part is the
event 6(x™) which means we are supplied with the data maximum likelihood
but not the data itself; the second part is the event x™ | f(x™) which then
supplies us with the full data. For a simple one dimensional Gaussian model,
this means receiving the sample mean first, and then secondly receiving the full
set of data points. For distributions with sufficient statistics, the first part 8(x™)
is generally all that is interesting in the data anyway!
The stochastic complexity (9) can now be manipulated as follows:

P(x",4(x") | 6, M)
Ry

= —log P(8(x")|n, M) — logP<x"|é(x"),o,M)\9:é(xn) (11)

6=0(x")

Cx"| M) =-log

where X
PO 16,0)]

55 POGx") =0 6,30)|

P(O(x™)|n, M) =
0=0(x")

The normalizing term of P(8(x™)|n, M) is just the regret (10) with the summa-
tion rearranged.

11
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Figure 1: Likelihood curves for K=2, n=10.

The NML version of stochastic complexity is now a two-part code. The first
part encodes the maximum likelihood value §(x™) according to the prior

PO(x™)|n, M) o maa,xP(é(x") |6, M) . (13)

Thus the parameter space © has been discretized to values achieving a maximum
likelihood for some sample of size n, and the prior distributed so each has
its highest possible likelihood. This construction is given in Figure 1 for the
binomial model with sample size n = 10. Each dashed curve gives a likelihood
for a different number of, say 1’s, in the data, yielding 11 curves in all. The
stochastic complexity is then computed for § = 0,0.1,0.2,...,1, which before
scaling by regret yields the solid curve. NML at the discretized points 6 for
different sample sizes n = 2,4,...,128 is given in Figure 2. Notice since this is
a discrete distribution, the probability at the points sums to one, and thus the
values decrease on average as 1/(n + 1).

The second part of the two-part code encodes the remainder of the data
given the maximum likelihood value 6(x") already encoded. Thus this is no
longer a standard sequential code for independent data. In the one dimensional
Gaussian case, for instance, it means the sample mean is supplied up front and
then the remainder of the data follows with a dependence induced by the known
mean.

The ingenious nature of the NML construction now becomes apparent: One
is in effect using a two part code to encode the data, yet no data bits have
been wasted in defining the parameters 6 since these also form part of the data
description itself. This two part code appears to be a complex codelength
to construct in pieces. However, one computes this two-part codelength without
having to explicitly compute the codelengths for the two parts. Rather, the regret

12
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Figure 2: NML distribution for K=2, different n.

is computed once and for all for the model class and the regular sequential code
for data (—log P(x™ | 8, M)) is the basis for the computation.

One is tempted to continue this construction to interpret P(8|n, M) based
on some reduction to a prior P(6|M) over the full parameter space ©, not just
the maximum likelihood values for samples of size n. But this is apparently not
possible in the general case. Moreover, in many cases no unique such prior exists.
For typical exponential family distributions, for instance, the dimensionality of
P(8|n, M) is less than P(6|M) and no unique prior will exist except in a limiting
sense when n — co. We discuss this situation next.

3.3 Normalized maximum likelihood as an optimization
problem

There have been a number of different alternatives for NML proposed in the
literature over the years. We compare some of these here. They provide us with
theoretical counterparts to our experimental results.

There are different standards one might use when comparing codelengths on
data.

Best case: The optimal possible value for encoding the data x™ according to
model M is log1/P(x"|6(x™), M), which is unrealizable because § needs
to be known.

Average of best case: Assuming a particular § for model M holds, the av-
erage of the best case is Epxn|g,ar) log1/P(x™|0(x™), M).

Barron et al. summarize various optimization problems with respect to these
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[2]. First, one needs the codelength that will actually be used, @(x™), which is
the length we are optimizing.

NML is sometimes derived as the following: find a ((-) minimizing the worst
case (for x™) increase over the best case codelength for x™:

n 2 n
min maxlog L 10C"), M)

Qxm) x~ Q(xm) 14)

Stochastic complexity SC(x™) is the minimizing distribution here [33]. Notice
this requires no notion of truth, only a model family used in building a code.

A related definition is based on the average best case codelength for §. Find
a Q(-) minimizing the worst case (for ) increase over the average best case
codelength for 6.

. P(x"[0(x"), M)
min max Ep(xn log———M———=
Qxmy g PO IOM) 08 T e

. P(x"|f(x"), M)
= min max E Epxn log—————~
Q) P(6 ar) PO PG 10,30) 108 T4 ey

P(x"f(x"), M)
= E Ep(xn log—————=
PI(I;?A)/(I) P(8| M) L P(x~|9,M) 108 P (x| M)
=logRY;, — min KL (P(x"|M)|SC(x"|M 15
og Yy — min. KL (P(x" M)]|SC(x" M) (15)
The first step is justified changing a maximum maxy into maxpg ) Ep(g|nr),
the second step is justified using minimax and maximin equivalences [2] since

. P(x"|é(x"), M)
P(x"|M) = arg minEpyn giap log — o x > 22)
(x"|M) Qg(x") P(x",0| M) 108 Q")

and the third step comes from the definition of SC(x"|M).
This optimization then yields the remarkable conclusions for the average
best case:

(16)

¢ Finding a Q(x") minimizing the worst case over 8 is equivalent to finding
a prior P(8|M) maximizing the average over 6, although the prior found
may not be unique. One could call this a “worst-case Bayesian” analysis
that is similar to the so-called reference prior analysis of Bernardo [3]:
a maxp(g|p) term has been added to a standard formula to minimize a
posterior expected cost. However, it applies to the finite sample case, and
thus is surely more realistic in practice.

e The minimizing @ (x™) must be a valid marginal P(x"|M) for some joint
PO|M)P(x™|6, M). Otherwise it is the closest in Kullback-Leibler diver-
gence to the NML distribution. If for some prior P(8|M) the induced
marginal P(x"|M) approaches the NML, then that prior must approach
the optimal. Thus NML provides the gold standard for this average case.
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Figure 3: Jeffreys prior versus NML as P(é|n = 16, M) for binomial.

e In particular, for exponential family distributions the likelihood for the
sufficient statistics of the data and the likelihood for their maximum like-
lihood value 6(x™) are closely related. When the Fisher Information is of
full rank, a prior P(6|M) with point mass on the set {8 : 3n6 = f(x") }
can sometimes be found to make the marginal P(x™|M) equal to the NML
distribution. We claim this holds for the multinomial case. The minimiz-
ing Q(x™) will thus be the NML in many cases.

Under certain regularity conditions, the optimizing prior approaches Jeffreys
prior when n — oo. Boundaries cause problems here because they mean part
of the parameter space is of a lower dimension. For finite n in the case of the
multinomial model when the boundaries are included, Xie and Barron [39] argue
for a mixture of Jeffreys priors corresponding to different dimensions being fixed.
For the binomial case, this corresponds roughly to mixing a Jeffreys prior with
point mass at the two end points (6 = 0,1). NML versus the Jeffreys prior for
the binomial is given in Figure 3 for the case when n = 16.

For the multinomial for different dimension K and sample size n, NML
corresponds closely to Jeffreys prior off the boundaries. The boundaries have
significant additional mass. An approximate proportion for Jeffreys prior in the
NML distribution is given in Figure 4 for the multinomial model with sample
sizes n = 10,...,1000 and K = 2,...,9. This records the ratio of NML over the
Jeffreys prior at a data point with near equal counts (i.e., off the boundaries).
It can be seen that the proportion slowly rises to 1.0 and for the section here at
least is sub-linear in convergence, i.e., very slow! Xie and Barron use O(1/n'/#)
for their convergence rate to the Jeffreys prior for the general multinomial. This
indicates just how dangerous it is to use the Jeffreys prior as a substitute for
the NML distribution in practice.
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Figure 4: Proportion of Jeffreys prior in NML for the multinomial model.

4 Computing the stochastic complexity for multi-
nomial data

4.1 One-dimensional case

In the following we instantiate the NML for the one-dimensional multinomial
case. Extension to the multi-dimensional model class discussed in Section 2.2 is
relatively straightforward and is given in Section 4.2.

4.1.1 Multinomial maximum likelihood

Let us assume that we have a multinomial variable X with K values. The
parameter set © is then a simplex

O ={(1,...,0K): 0, >0,00 +---+ 0k =1}, (17)

where 0, = P(X = k). Under the usual i.i.d. assumption the likelihood of a
data set x™ is given by

K
P(x"0) = [] 63*, (18)

k=1
where hy, is the frequency of value k in x™. Numbers (hy,...,hx) are called

the sufficient statistics of data x™. Word “statistics” in this expression means a
function of a data and “sufficient” refers to the fact that the likelihood depends
on the data only through them.
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To instantiate the stochastic complexity (9) to the single multinomial case,
we need the maximum likelihood estimates of the parameters 6y, i.e.,

é(x”):(él,...,éK)=(%,...,}%{). (19)

Thus, the likelihood evaluated at the maximum likelihood point is given by

Peer 186 = [ ()" (20)

n
k=1

4.1.2 Multinomial regret

Since the maximum likelihood (20) only depends on the sufficient statistics hg,
the regret can be written as

n! K hk b
Rp= Y 7]11!___}“{!]91_[(;) : (21)
=1

hi+--+hxk=n
where the summing goes over all the compositions of n into K parts, i.e., over
all the possible ways to choose non-negative integers hi,...,hx so that they
sum up to n.
The time complexity of (21) is O (n®~!), which is easy to see. For example,
take case K = 3. The regret can be computed in O (n2) time, since we have

Rp= Y ()" ()" (k)™
K= hl'hg'h3' n n n

h1+h2+h3:n
— i "—Z’H n! - (E)hl (@)hz (m>n—hl—h2
- h1=0 ha=0 h1'h2'(n —hy — hg)' n n " .
(22)

Note that slightly more efficient way for computing the regret would be to
sum over partitions of n instead of compositions. A (restricted) partition of
integer n into K parts is a set of K non-negative integers whose sum is n. For
example, compositions hy = 3,hy = 2,hs3 = 5 and hy = 2,hy = 5,h3 = 3
(with n = 10) correspond to the same partition {5,3,2}. Since the maximum
likelihood term in (21) is clearly different for every partition (but not for every
composition), it would be more efficient to sum over the partitions. However, the
number of partitions is still O (n®~'), so this more complex summing method
would not lead to any improvement of the time complexity. Therefore, in or-
der to compute the stochastic complexity in practice, one needs to find better
methods. This issue will be addressed below.

4.1.3 Recursive formula

A practical method for regret computation is derived via a clever recursion trick.
The idea is to find a dependence of R} and regret terms corresponding to a
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smaller number of values. It turns out that the double recursive formula (23)
derived below is a way to go. In this formula, R% is represented as a function
of R%. and R%_ ., where K* can be any integer in {1,..., K —1}. We have

n n! K hk b
m= Y ol (%)

hi+--+hx=n
K R
- > S
nm hy!
hit+-+hx=n k=1

K
. nl it ri? (rl! hZ’“ ro! hg’“
B Z n™ ril ol r”IIh! rh2 II h!
hi+thg+=r1 172 1 g= k 2 = k

K*+1
hg*41++hx=re
ri+ro=n

K* h

_ ) 'y (ol 17 (% '

o n® il et \hy!- - hges! r
hi+-+hg==r1 1 2 1 K k=1 1
hg*41++hg=rs

r1+re=n
K h
. ra! 11 (@) )
eqql.-- !
hK +1- hK'k:K*+1 T9
() ()"
= — =) R -R?_... 23
Z rilry! \n n K K-K (23)
r1+reo=n

This formula can be used in efficient regret computation by applying a combi-
natoric doubling trick. The procedure goes as follows:

1. Calculate table of R% for 5 = 1,...,n using the composition summing
method (21). This can be done in time O (n?).

2. Calculate tables of R}, form=2,..., |log, K| and j = 1,...,n using the
table R} and recursion formula (23). This can be done in time O (n?log K).

3. Build up R} from the tables. This process also takes time O (n2 log K )

The time complexity of the whole recursive formula is then O (n?log K).
As an example of this method say we want to calculate R3;. The process
is illustrated in Figure 5. First we form the tables R}.. for m = 1,2,3,4 and

n =1,...,N. Formula (23) is first applied to get the tables of R}, from Rg
and Ré for j = 1,...,n. Finally, R} can be computed from the tables of R,
and R{,.

4.2 Multi-dimensional generalization

In this section, we show how to compute NML for the multi-dimensional clus-
tering model class (denoted here by M) discussed in Section 2.2. Using (21),
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Figure 5: Recursive computation of R%.

we have

C(x"|Mr) = —log (ﬁ (%)hk ﬁ ﬁ l’i[ (fzkv) ) : R%IT’K, (24)

k=1 i=1k=1v=1

where hy is the number of times y has value k£ in x™, fiz, is the number of
times a; has value v when y = k, and R}, is the regret

Ry ik = Z Z Z

hi+-+hg=n fi11++frin; =h1 fixk1+ -+ fikn, =hk

D> g;?%;fi(%)m

fm11+"'+fm1'n.m:h1 fmr1+ -+ fmkn, =hk k=1
Fikw
H H ' H (fzkv) ) (25)
i=1 k=  Jiwa! f“”“ v=1

Note that we can move all the terms under their respective summation signs,
which gives

n n! K hk e
Mo = 2 arfaall(;)

hi+-+hxk=n

ﬁﬁ Z hy! ﬁ (fuw)f"k"
fzkl fzkn,' hk

i=1k=1 fip1+-+fikn;, =hw v=1
K hy m K
| h k
_ n: k hi
- Z Byl hg! H (F) H R (26)
hi+-+hg=n k=1 i=1 k=1
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which depends only linearly on the number of variables m making it possible to
compute (24) for cases with lots of variables provided that the number of value
counts are reasonable small.

Unfortunately, formula (26) is still exponential with respect to the number
of values K,n1,...,n,,. The situation is especially bad if the number of clus-
ters K is big which often is the case. It turns out, however, that the recursive
formula (23) can also be generalized to the multi-dimensional case. Proceeding
similarly as in (23), we get

. n! K By he m K \
ek = D mﬂ(;) ITIT 72

hi++hx=n k=1 i=1 k=1
K h, m K
- Y (SIS IR
nm hy! i
hi++hg=n k=1 i=1k=1

k
K* ,h K h
T1 T2 k k
- 3 iy’ (rd oy byt ! 11 hig
e LT i byl r3? ha!
hg*p1++hx=r2

T1+1r2o=n
m K* K
hi hi
ITII & 11 &
i=1k=1 k=K*+1

> l ) (®)

B rira! \n n

hit-thgx=r1 12
hg+p1t-+hg=r2

r1+r2=n
K* by m K*
. (7’71' II (%) II Hth>
o] n;
hales-hyeed 2 A i=1 k=1
K hy m K
Y R 11 hi I =
hiq1!---hi! ry . ni
E=K*+1 =1 h=K*+1
= ¥ i ()" ()" e @
rilre! \m n Mz, K> M K—K**
r1+ro=n

That is, we can calculate multi-dimensional regrets using exactly similar proce-
dures as described in Section 4.1.3.

In clustering applications it is typical that the number of clusters K is un-
known. Therefore, in order to apply NML for clustering, one needs to evalu-
ate multi-dimensional regrets with varying number of clusters. It follows that
the easiest way to use the recursive formula (27) is to start with the trivial
case K =1, and then always choose K* = 1. The resulting procedure is very
simple and as effective as any other provided that one wants to calculate regrets
for the full range K = 1,..., Kpax. On the other hand, if there is only need
to evaluate NML for some fixed K (as is the case if the number of clusters is
known), then one should use similar procedures as described in Section 4.1.3.
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In practice the recursive NML computation for the clustering case goes as
follows. The goal is to calculate a (n X Knax) table of multi-dimensional regrets.
The procedure starts with the calculation of another array consisting of one-
dimensional regrets, since these are needed in (27). The size of this array is
(n X Vinax ), where Vi,ax is the maximum of the number of values for the variables
(a1,...,am,). This array is calculated using (23). The time complexity of this
step is clearly O (Vmax - N?).

The next step is to determine the starting point for the calculation of the
array of multi-dimensional regrets. When K = 1, formula (26) clearly reduces
to

m
Men = [ R (28)
i=1
Another trivial case is n = 0, which gives
Rlpx =1, (29)

for all K. After that, the calculation proceeds by always increasing n by one,
and for each fixed n, increasing K by one up to the maximum number of clusters
wanted.

The interesting thing is that although the multi-dimensional regret for-
mula (26) is rather complicated, the described procedure never uses it directly.
The only things needed are the trivial starting cases K = 1 and n = 0, and
the recursive formula (27). It follows that the calculation of multi-dimensional
regrets is computationally as effective as in the single-dimensional case, which
is a rather surprising but important fact.
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5 Empirical results

5.1 Clustering scoring methods

We have presented a framework for data clustering where the validity of a clus-
tering y™ is determined according to the complete data joint probability in
Equation (4). Consequently, we obtain different clustering criteria or scoring
methods by using different ways for computing this probability. In the follow-
ing, the following clustering methods were empirically validated:

NML The NML criterion given by Equation (9).

UNI The Bayesian criterion given by the marginal likelihood (5) over the uni-
form prior distribution.

JEF The Bayesian criterion given by the marginal likelihood (5) over the Jef-
freys prior distribution (6).

ESS(r) The Bayesian criterion given by the marginal likelihood (5) over the
prior distribution (7). The parameter r is the equivalent sample size
required for determining this prior.

The above means that ESS(r) is actually a continuum of methods, as the
equivalent sample size can be any positive real number. In the following the
following alternatives were tested: ESS(0.01), ESS(0.1), ESS(1.0), ESS(10.0)
and ESS(100.0).

5.2 Empirical setup

In the following we wish to study empirically how the NML clustering crite-
rion compares with respect to the Bayesian scores UNI, JEF and ESS(r). The
problem is now to find an empirical setup where these different criteria can
be compared objectively. However, this turns out to be a most difficult task.
Namely, at first sight it seems that an objective empirical scenario can be ob-
tained by the following setup:

1. Choose randomly K probability distributions P(x | ©1),...,P(x | Ok).
2. i:=1.
3. Generate data x™ by repeating the following procedure n times:

(a) Choose a random number z; between 1 and K.
(b) Draw randomly a data vector x; from distribution P(x | ©,,).
(c) i:=i+1.

4. Cluster the generated data x™ in order to get a clustering y™.

n

5. Validate the clustering by comparing y™ and the “ground truth” z™.
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We claim that the above procedure has several major weaknesses. One issue
is that the setup obviously requires a search procedure in step 4, as the clustering
space is obviously exponential in size. On the other hand, any heuristic search
algorithm chosen for this purpose may introduce a bias favoring some of the
criteria.

More importantly, one can argue that the “original” clustering z™ is not
necessarily the goal one should aim at: Consider a case where the data was
generated by a 10-component mixture model, where two of the components are
highly overlapping, representing almost the same probability distribution. We
claim that in this case a sensible clustering method should produce a clustering
with 9 clusters, not 10! On the other hand, consider a case where all the 10
component distributions are not overlapping, but only one sample has been
drawn from each of the 10 components. We argue that in this case a sensible
clustering criterion should suggest a relatively small number of clusters, say 1 or
2, instead of the “correct” number 10, since with small sample sizes the variation
in the data could not possibly justify the use of so many clusters (meaning a
high number of parameters).

This means that the above scenario with artificial data makes only sense if
the mixture components are non-overlapping, and the amount of data is sub-
stantial. Obviously it can now be argued that this unrealistic situation hardly
resembles real-world clustering problems, so that the results obtained in this
way would not be very relevant. What is more, if the data is generated by
a finite mixture of distributions, which means that the local independence as-
sumptions we made in Section 2.2 do indeed hold, then this setup favors the
Bayesian approach as in this unrealistic case the marginal likelihood criterion
is also minimax optimal. A more realistic setup would of course be such that
the assumptions made would not hold, and the data would not come from any
of the models in our model class.

The above scenario can be modified to a more realistic setting by changing
the data generating mechanism so that the assumptions made do not hold any
more. One way to achieve this goal in our local independence model case would
be to add dependencies between the variables. However, this should be done
in such a manner that the dependencies introduced are sensible in the sense
that such dependencies exist in realistic domains. This is of course a most
difficult task. For this reason, in the set of experiments reported here we used
real-world data that was gathered in a controlled manner so that the above
testing procedure could be used although reality was used as a data generating
mechanism instead of a manually constructed mixture model. Before describing
the data, let us have a look at the actual clustering procedure used in the
experiments.

5.3 The search algorithm

For the actual clustering algorithm, we studied several alternatives. The best re-
sults were obtained with a simple stochastic greedy algorithm, where the number
of clusters K was first fixed, and then the following procedure repeated several
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times:

1. Choose a random initial data assignment.
2. Choose a random data vector.

3. Move the chosen data vector to the cluster optimizing locally the clustering
score.

4. TIf converged, stop. Otherwise, go to step 2.

This procedure was repeated with all the possible values for K, and with all
the clustering methods listed in Section 5.1. At the end, all the clusterings of
different size, produced by all the runs with all the clustering methods, were put
together into a large pool of candidate clusterings. Finally, all the candidate
clusterings were evaluated by using all the clustering criteria. The purpose of
this procedure was to prevent the effect of chance between individual runs of the
stochastic search algorithm with different criteria. It should be noted, however,
that in our experiments almost all the best clusterings were found using NML as
the clustering score. We believe that this tells something important about the
shape of the search space with different clustering criteria, and this interesting
issue will be studied in our future research.

5.4 The data

In this set of experiments, the data consisted of measured signal strength val-
ues of radio signals originating from eight WLAN access points (transmitters)
located in different parts of our laboratory. As the measured signal strength
depends strongly on the distance to the transmitting access point, the distribu-
tion of the data collected at some fixed point depends on the relative distances
of this point and the locations of the eight access points. This means that the
measurement distributions at two locations far from each other are very likely
to be very different. Furthermore, as the access points are not affecting each
other, the eight measured signals are at any fixed point more or less independent
of each other.

Consequently, the data collected in the above manner is in principle similar
to artificial data generated by a finite mixture model. Nevertheless, in real-
world environments there is always some inherent noise caused by factors such
as measurement errors, position and angle of reflecting or damping surfaces,
air humidity, presence or absence of people and so on. This means that this
type of data resembles artificial data in the sense that the overlap between the
component distributions can be controlled by choosing the locations where the
measurements are made, but at the same time the data contains realistic type
of noise that was not artificially generated.

5.5 The results

For this set of experiments, data was gathered at different locations situated as
far from each other as possible. This means that the data generating mecha-
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nisms were rather different, and partitioning the unlabelled data into clusters
corresponding to the measurement locations was relatively easy with all the
clustering methods used, if a sufficient amount of data was available. However,
as we in this setup were able to control the amount of data available, we could
study the small sample size behavior of the different clustering scores. A typical
example of the behavior of different clustering criteria can be seen in Figures 6
and 7.
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Figure 6: An example of the behavior of different clustering scores in the task
of finding a four cluster data partitioning, as function of sample size per cluster.

In Figure 6 we see a typical example of how the NML, UNI and JEF clus-
tering criteria behave as a function of the sample size. In this case, the correct
number of clusters was four (data was gathered at four different positions), and
the X-axis gives the number of data vectors collected at each of the 4 locations.
The Y-axis gives the number of clusters in the best clustering found with each
of the three clustering criteria, where the pool of candidate clusterings were
generated as described in Section 5.3. In this simple case, whenever the best
clustering contained 4 clusters, the actual clustering y™ was perfectly consistent
with the way the data was collected, i.e., the clustering suggested was “correct”.
Obviously, whenever the suggested number of clusters was other than 4, the cor-
rect clustering was not found. The values on the Y-axis are averages over several
repeats of the sequential procedure consisting of data gathering, construction of
the clustering candidate pool and validation of the clustering candidates with
different clustering criteria.

From Figure 6 we can see that with very small sample sizes (with less than
10 samples from each cluster), NML tends to suggest less clusters than there
actually is. However, as discussed above, this is a sensible behavior as very little
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Figure 7: An example of the behavior of different ESS clustering scores in the
task of finding a four cluster data partitioning, as function of sample size per
cluster.

amount of data does not justify very complex models. After sample size of 10,
the NML always finds the correct number of clusters (and as explained above,
also the correct clustering). The behavior of the UNI and JEF scores is very
similar, but they need more data in order to find the correct clustering.

The behavior of the ESS scores is rather interesting, as we can see in Figure 7.
In this particular case, a relatively small equivalent sample size seems to work
well: ESS(1) converges rather quickly (after seeing 20 samples per cluster) to
the right level. However, the behavior is somewhat counter-intuitive with very
small sample sizes as the suggested number of clusters is first close to 4, then
goes down as the sample size increases to 15, after which it goes up again. A
similar, but even more disturbing pattern is produced by the ESS scores with
small equivalent sample size: with very small samples (under 10 samples per
cluster), they tend to suggest clusterings with much too high number of clusters.
This of course would lead to catastrophical results in practice.

The ESS scores with a high equivalent sample size increase the suggested
number of clusters with increasing data size up to a point, after which they start
to converge to the right level. As a matter of fact, after a sufficient number of
samples from each cluster, all the clustering criteria typically suggest a clustering
identical or very close to the correct clustering. Consequently, this example
shows that the interesting differences between the different clustering methods
cannot be seen in low-dimensional cases if a large number of data is available.
Real world problems are typically very high-dimensional, which means that the
amount of data available is always relatively low, which suggests that the small
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sample size behavior of the clustering criteria observed here is of great practical
importance.
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6 Conclusion

We suggested a framework for data clustering based on the idea that a good
clustering is such that it allows efficient compression when the data is encoded
together with the cluster labels. This intuitive principle was formalized as a
search problem, where the goal is to find the clustering leading to maximal
joint probability of the observed data plus the chosen cluster labels, given a
parametric probabilistic model class.

The nature of the clustering problem calls for objective approaches for com-
puting the required probabilities, as the presence of the latent clustering variable
prevents the use of subjective prior information. In the theoretical part of the
paper, we compared objective Bayesian approaches to the solution offered by
the information-theoretic Minimum Description Length principle, and observed
some interesting connections between the Normalized Maximum Likelihood ap-
proach and the Bayesian reference prior approach.

To make things more concrete, we instantiated the general data cluster-
ing approach for the case with discrete variables and a local independence as-
sumption between the variables, and presented a recursive formula for efficient
computation of the NML code length in this case. The result is of practical
importance as the amount of discrete data is increasing rapidly (in the form
of WWW pages, WWW log data, questionnaires, and so on). Although the
approach can be easily extended to more complex cases than the one studied
in this paper, we argue that the local independence model is important as the
resulting clusters are in this case easy to analyze. It can also be said that the
local independence model assumed here is complex enough, as one can obviously
model arbitrarily complex distributions by adding more and more clusters.

In the empirical part of the paper we studied the behavior of the NML
clustering criterion with respect to the Bayesian alternatives. Although all the
methods produced reasonable results in simple low-dimensional cases if sufficient
amount of data was available, the NML approach was clearly superior in more
difficult cases with insufficient amount of data. We believe that this means that
NML works better in practical situations where the amount of data available is
always vanishingly small with respect to the multi-dimensional space determined
by the domain variables.

The difference between NML and the Bayesian approaches was especially
clear when compared to the “parameter-free” approaches with either the uni-
form or the Jeffreys prior. The equivalent sample size prior produced good
results if one was allowed to manually choose the ESS parameter, but this is of
course cheating, as no general guidelines for automatically selecting this param-
eter can be found.

In this paper the clustering framework was restricted to flat, non-hierarchical
clusterings, but the approach could be modified for hierarchical clustering prob-
lems by introducing several clustering variables, and by assuming a hierarchical
structure between them. This path was left to be explored in our future research.
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