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April 12, 2005

HIIT

TECHNICAL

REPORT

2005–1



COMPUTING THE REGRET TABLE FOR MULTINOMIAL DATA

Petri Kontkanen, Petri Myllymäki
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Abstract

Stochastic complexity of a data set is defined as the
shortest possible code length for the data obtainable
by using some fixed set of models. This measure is
of great theoretical and practical importance as a
tool for tasks such as model selection or data clus-
tering. In the case of multinomial data, comput-
ing the modern version of stochastic complexity,
defined as the Normalized Maximum Likelihood
(NML) criterion, requires computing a sum with
an exponential number of terms. Furthermore, in
order to apply NML in practice, one often needs to
compute a whole table of these exponential sums.
In our previous work, we were able to compute this
table by a recursive algorithm. The purpose of this
paper is to significantly improve the time complex-
ity of this algorithm. The techniques used here are
based on the discrete Fourier transform and the con-
volution theorem.

1 Introduction
The Minimum Description Length (MDL)principle devel-
oped by Rissanen[Rissanen, 1978; 1987; 1996] offers a well-
founded theoretical formalization of statistical modeling. The
main idea of this principle is to represent a set of models
(model class) by a single model imitating the behaviour of
any model in the class. Such representative models are called
universal. The universal model itself does not have to belong
to the model class as often is the case.

From a computer science viewpoint, the fundamental idea
of the MDL principle iscompression of data. That is, given
some sample data, the task is to find a description orcode
of the data such that this description uses less symbols than
it takes to describe the data literally. Intuitively speaking,
this approach can in principle be argued to produce the best
possible model of the problem domain, since in order to be
able to produce the most efficient coding of data, one must
capture all the regularities present in the domain.

The MDL principle has gone through several evolutionary
steps during the last two decades. For example, the early re-
alization of the MDL principle, the two-part code MDL[Ris-
sanen, 1978], takes the same form as the Bayesian BIC cri-
terion[Schwarz, 1978], which has led some people to incor-

rectly believe that MDL and BIC are equivalent. The latest
instantiation of the MDL isnot directly related to BIC, but
to the formalization described in[Rissanen, 1996]. Unlike
Bayesian and many other approaches, the modern MDL prin-
ciple does not assume that the chosen model class is correct.
It even says that there is no such thing as a true model or
model class, as acknowledged by many practitioners. The
model class is only used as a technical device for constructing
an efficient code. For discussions on the theoretical motiva-
tions behind the modern definition of the MDL see, e.g.,[Ris-
sanen, 1996; Merhav and Feder, 1998; Barronet al., 1998;
Grünwald, 1998; Rissanen, 1999; Xie and Barron, 2000;
Rissanen, 2001].

The most important notion of the MDL principle is the
Stochastic Complexity (SC), which is defined as the short-
est description length of a given data relative to a model
classM. However, the applications of the modern, so called
Normalized Maximum Likelihood (NML) version of SC,
at least with multinomial data, have been quite rare. The
modern definition of SC is based on the Normalized Max-
imum Likelihood (NML) code[Shtarkov, 1987]. Unfortu-
nately, with multinomial data this code involves a sum over
all the possible data matrices of certain length. Comput-
ing this sum, usually called theregret, is obviously expo-
nential. Therefore, practical applications of the NML have
been quite rare, In our previous work[Kontkanenet al., 2003;
2005], we presented a polynomial time (quadratic) method to
compute the regret. In this paper we improve our previous re-
sults and show how mathematical techniques such as discrete
Fourier transform and fast convolution can be used in regret
computation. The idea of applying these techniques to the
regret computation problem was first suggested in[Koivisto,
2004], but as discussed in[Kontkanenet al., 2005], in order
to apply NML to practical tasks such as clustering, a whole
table of regret terms is needed. We will modify the method
of [Koivisto, 2004] for this task.

In Section 2 we shortly review how the stochastic complex-
ity is defined and our previous work on the computational
methods. We also introduce the concept of the regret table.
Section 3 previews some mathematical results about convolu-
tion and discrete Fourier transform and presents the new fast
convolution-based NML algorithm. Finally, Section 4 gives
the concluding remarks and presents some ideas for future
work.



2 Stochastic Complexity for Multinomial
Data

2.1 NML And Stochastic Complexity
The most important notion of the MDL is theStochastic Com-
plexity (SC). Intuitively, stochastic complexity is defined as
the shortest description length of a given data relative to a
model class. To formalize things, let us start with a definition
of a model class. Consider a setΘ ∈ R

d, whered is a pos-
itive integer. A class of parametric distributions indexedby
the elements ofΘ is called amodel class. That is, a model
classM is defined as

M = {P (· | θ) : θ ∈ Θ}. (1)

Consider now a discrete data set (or matrix)x
N =

(x1, . . . ,xN ) of N outcomes, where each outcomexj is
an element of the setX consisting of all the vectors of the
form (a1, . . . , am), where each variable (or attribute)ai takes
on valuesv ∈ {1, . . . , ni}. Furthermore, let̂θ(xN ) denote
themaximum likelihoodestimate of dataxN , i.e.,

θ̂(xN ) = arg max
θ∈Θ

{P (xN | θ)}. (2)

The Normalized Maximum Likelihood (NML)distribu-
tion [Shtarkov, 1987] is now defined as

PNML(xN | M) =
P (xN | θ̂(xN ),M)

RN
M

, (3)

whereRN
M

is given by

RN
M =

∑

x
N

P (xN | θ̂(xN ),M), (4)

and the sum goes over all the possible data matrices of sizeN .
The termRN

M
is called theregret. The definition (3) is intu-

itively very appealing: every data matrix is modeled using
its own maximum likelihood (i.e., best fit) model, and then a
penalty for the complexity of the model classM is added to
normalize the distribution.

The stochastic complexity of a data setx
N with respect to a

model classM can now be defined as the negative logarithm
of (3), i.e.,

SC(xn | M) = − log
P (xN | θ̂(xN ),M)

RN
M

(5)

= − log P (xN | θ̂(xN ),M) + logRN
M. (6)

2.2 NML for Single Multinomial Model Class
In this section we instantiate the NML distribution (3) (and
thus the stochastic complexity) for the single-dimensional
multinomial case. Let us assume that a discrete random vari-
ableX with K values is multinomially distributed. That is,
the parameter setΘ is a simplex

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · · + θK = 1}, (7)

where
θk = P (X = k), k = 1, . . . ,K. (8)

We denote this model class byMK . Now consider a data
sample of sizeN from the distribution ofX, i.e., x

N =
(x1, . . . , xN ) and eachxj ∈ {1, . . . ,K}. The likelihood is
clearly given by

P (xN | θ) =

N
∏

j=1

P (xj | θ) =

N
∏

j=1

θxj
=

K
∏

k=1

θhk

k , (9)

where hk is the frequency of valuek in x
N . Numbers

(h1, . . . , hK) are called thesufficient statisticsof datax
N .

Word “sufficient” refers to the fact that the likelihood depends
on the data only through them.

To instantiate the NML distribution (3) for theMK model
class, we need to find the maximum likelihood estimates for
the parametersθk. As one might intuitively guess, the ML pa-
rameters are given by the relative frequencies of the valuesk
in the data (see, e.g.,[Johnsonet al., 1997]):

θ̂(xN ) = (θ̂1, . . . , θ̂K) (10)

= (
h1

N
, . . . ,

hK

N
). (11)

Thus, the likelihood evaluated at the maximum likelihood
point is

P (xN | θ̂(xN )) =
K
∏

k=1

(

hk

N

)hk

, (12)

and the NML distribution becomes

PNML(xN | MK) =

∏K
k=1

(

hk

N

)hk

RN
MK

, (13)

where
RN

MK
=

∑

x
N

P (xN | θ̂(xN ),MK) (14)

=
∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

, (15)

and the sum goes over all thecompositionsof N into K parts,
i.e., over all the possible ways to choose a vector of non-
negative integers (h1, . . . , hK) such that they sum up toN .
TheN !/(h1! · · ·hK !) factor in (15) is called themultinomial
coefficientand it is one of the basic combinatorial quantities.
It counts the number of arrangements ofN objects intoK
boxes each containingh1, . . . , hK objects, respectively.

An efficient method for computing (15) was derived
in [Kontkanenet al., 2003]. It is based on the following re-
cursive formula:

RN
MK

=
∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

(16)

=
∑

r1+r2=N

N !

r1!r2!

(r1

N

)r1
(r2

N

)r2

· Rr1

Mk1
· Rr2

Mk2

(17)

=

N
∑

r=0

N !

r!(N − r)!

( r

N

)r
(

N − r

N

)N−r

· Rr
Mk1

· RN−r
Mk2

, (18)

wherek1 +k2 = K. See[Kontkanenet al., 2003] for details.



2.3 NML for Clustering Model Class

In [Kontkanenet al., 2005] we discussed NML computa-
tion methods for a multi-dimensional model class suitable
for cluster analysis. The selected model class has also been
successfully applied to mixture modeling[Kontkanenet al.,
1996], case-based reasoning[Kontkanenet al., 1998], Naive
Bayes classification[Grünwaldet al., 1998; Kontkanenet al.,
2000b] and data visualization[Kontkanenet al., 2000a].

Let us assume that we havem variables,(a1, . . . , am). We
also assume the existence of a special variablec (which can be
chosen to be one of the variables in our data or it can be latent)
and that given the value ofc, the variables(a1, . . . , am) are
independent. The resulting model class is denoted byMT .
Our assumptions can now be written as

P (c, a1, . . . , am | MT ) = P (c | MT )

m
∏

i=1

P (ai | c,MT ).

(19)
Suppose the special variablec has K values and eachai

hasni values. The NML distribution for the model classMT

is now

PNML(xN | MT ) =

[

K
∏

k=1

(

hk

N

)hk m
∏

i=1

K
∏

k=1

ni
∏

v=1

(

fikv

hk

)fikv

]

·
1

RN
MT ,K

, (20)

wherehk is the number of timesc has valuek in x
N , fikv is

the number of timesai has valuev whenc = k, andRN
MT ,K

is the regret

RN
MT ,K =

∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

·
m
∏

i=1

K
∏

k=1

∑

fik1+···+fikni
=hk

hk!

fik1! · · · fikni
!

·

ni
∏

v=1

(

fikv

hk

)fikv

(21)

=
∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

·

m
∏

i=1

K
∏

k=1

Rhk

Mni
. (22)

It turns out[Kontkanenet al., 2005] that the recursive for-
mula (18) can be generalized also to this multi-dimensional

n/k 1 2 · · · K

0 R0
1 R0

2 · · · R0
K

1 R1
1 R1

2 · · · R1
K

· · · · · · · · · · · · · · ·
N RN

1 RN
2 · · · RN

K

Table 1: The regret table.

case:

RN
MT ,K =

∑

h1+···+hK=N

n!

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

·

m
∏

i=1

K
∏

k=1

Rhk

Mni
(23)

=
∑

r1+r2=N

N !

r1!r2!

(r1

N

)r1
(r2

N

)r2

· Rr1

MT ,k1
· Rr2

MT ,k2
(24)

=
N

∑

r=0

N !

r!(N − r)!

( r

N

)r
(

N − r

N

)N−r

· ·Rr
MT ,k1

· RN−r
MT ,k2

, (25)

wherek1 + k2 = K.

2.4 The Regret Table

As discussed in[Kontkanenet al., 2005], in order to apply
NML to the clustering problem, two tables of regret terms
are needed. The first one consists of the one-dimensional
termsRn

Mk
for n = 0, . . . , N andk = 1, . . . , n∗, wheren∗

is defined byn∗ = max{n1, . . . , nm}. The second one holds
the multi-dimensional regret terms needed in computing the
stochastic complexityPNML(xN | MT ). More precisely,
this table consists of the termsRn

MT ,k for n = 0, . . . , N and
k = 1, . . . ,K, whereK is the maximum number of clusters.

The idea of the regret table can also be generalized. The
natural candidate for the first dimension of the table is the
size of the data. In addition to number of values or clusters,
the other dimension can be, e.g., number of classes in classifi-
cation tasks, or number of components in mixture modeling.
The regret table is figured in Table 1.

For the single-dimensional multinomial case, the proce-
dure of computing the regret table starts by filling the first
column, i.e., the casek = 1. This is trivial, since clearly
Rn

M1
= 1 for all n = 0, . . . , N . To compute the columnk,

for k = 2, . . . ,K, the recursive formula (18) can be used by
choosing, e.g.,k1 = k − 1, k2 = 1. The time complexity of
filling the whole table isO

(

K · N2
)

.
The multi-dimensional case is very similar, since the recur-

sion formula is essentially the same. The only exception is the
computation of the first column. Whenk = 1, Equation (22)
reduces to

Rn
MT ,1 =

m
∏

i=1

Rn
Mni

, (26)



for n = 0, . . . , N . After these easy calculations, the rest of
the regret table can be filled by applying the recursion (25)
similarly as in the single-dimensional case. The time com-
plexity of calculating the multi-dimensional regret tableis
alsoO

(

K · N2
)

.
In practice, the quadratic dependency on the size of data

in both the single- and multi-dimensional cases limits the ap-
plicability of NML to small or moderate size data sets. In
the next section, we will present a novel, significantly more
efficient method for computing the regret table.

3 Fast Convolution
As mentioned in[Koivisto, 2004], the so-calledfast convolu-
tion algorithm can be used to derive very efficient methods for
regret computation. In this section, we will present a version
suitable for computing regret tables. We will start with some
mathematical background, and then proceed by deriving the
fast NML algorithm.

3.1 Discrete Fourier Transform
Consider a finite-length sequence of real or complex numbers
a = (a0, a1, . . . , aN−1). The Discrete Fourier Transform
(DFT) of a is defined as a new sequenceA with

An =

N−1
∑

h=0

ah · e2πihn/N (27)

=

N−1
∑

h=0

ah ·

(

cos
2πhn

N
+ i sin

2πhn

N

)

, (28)

for n = 0, . . . , N − 1. A very intuitive explanation of the
DFT is presented in[Wilf, 2002], where it is shown that if
the original sequence is interpreted as the coefficients of a
polynomial, the Fourier transformed sequence is obtained by
evaluating the values of this polynomial at certain points on
the complex unit circle. See[Wilf, 2002] for details.

To recover the original sequencea given the trans-
formed sequenceA, the DiscreteinverseFourier Transform
(DFT−1) is used. The definition ofDFT−1 is very similar to
DFT, and it is given by

an =
1

N

N−1
∑

h=0

Ah · e−2πihn/N (29)

=
1

N

N−1
∑

h=0

Ah ·

(

cos
2πhn

N
− i sin

2πhn

N

)

, (30)

for n = 0, . . . , N − 1.
A trivial algorithm for computing the discrete Fourier

transform of lengthN takes timeO
(

N2
)

. However, by
means of the classicFast Fourier Transform (FFT)al-
gorithm (see, e.g.,[Wilf, 2002]), this can be improved
to O (N log N). As we will soon see, the FFT algorithm is
the basis of the fast regret table computation method.

3.2 The Convolution Theorem
A mathematical concept ofconvolutionturns out to be a key
element in the derivation of the fast NML algorithm. In this

section, we will briefly review basic properties of convolution
that are relevant to the discussion of the rest of the section.

Let a = (a0, a1, . . . , aN−1) andb = (b0, b1, . . . , bN−1)
be two sequences of lengthN . The convolution ofa andb is
defined as a sequencec,

c = a ∗ b (31)

= (c0, c1, . . . , cN−1), (32)

where

cn =

n
∑

h=0

ahbn−h, n = 0, . . . , N − 1. (33)

Note that the convolution is mathematically equivalent to
polynomial multiplication if the contents of the sequencesare
interpreted as the coefficients of the polynomials.

A direct computation of the convolution (33) clearly takes
timeO

(

N2
)

. Theconvolution theoremshows how to com-
pute convolution via the discrete Fourier transform: Leta =
(a0, a1, . . . , aN−1) andb = (b0, b1, . . . , bN−1) be two se-
quences. The convolution ofa andb can be computed as

c = a ∗ b = DFT−1(DFT(a) · DFT(b)), (34)

where all the vectors are zero padded to length2N , and
the multiplication is component-wise. In other words, the
Fourier transform of the convolution of two sequences is
equal to the product of the transforms of the individual se-
quences. Since both the DFT andDFT−1 can be computed
in timeO (N log N) via the FFT algorithm, and the multipli-
cation in (34) only takes timeO (N), it follows that the time
complexity of computing the convolution sequence via DFT
is O (N log N).

3.3 The Fast NML Algorithm
In this section we will show how the fast convolution algo-
rithm can be used to derive a very efficient method for the
regret table computation. The new method replaces the recur-
sion formulas (18) and (25) discussed in the previous section.

Our goal here is to calculate the columnk of the regret table
given the firstk − 1 columns. Let us define two sequencesa

andb by

an =
nn

n!
Rn

k−1, bn =
nn

n!
Rn

1 . (35)

Evaluate now the convolution ofa andb,

(a ∗ b)n =

n
∑

h=0

hh

h!
Rh

k−1

(n − h)n−h

(n − h)!
Rn−h

1 (36)

=
nn

n!

n
∑

h=0

n!

h!(n − h)!

(

h

n

)h (

n − h

n

)n−h

· Rh
k−1R

n−h
1 (37)

=
nn

n!
Rn

k , (38)

where the last equality follows from the recursion formu-
las (18) and (25). This derivation shows that the columnk
can be computed by first evaluating the convolution (38), and
then multiplying each term byn!/nn.



It is now clear that by computing the convolutions via
the DFT method discussed in the previous section, the
time complexity of computing the whole regret table drops
to O (N log N · K). This is a major improvement over
O

(

N2 · K
)

obtained by the recursion method of Section 2.

4 Conclusion And Future Work
In this paper we discussed efficient computation algorithms
for normalized maximum likelihood computation in the case
of multinomial data. The focus was on the computation of the
regret table needed by many applications. We showed how
advanced mathematical techniques such as discrete Fourier
transform and convolution can be applied to the problem.

The main result of the paper is a derivation of a novel al-
gorithm for regret table computation. The theoretical time
complexity of this algorithm allows practical applications of
NML in domains with very large datasets. With the earlier
quadratic-time algorithms, this was not possible.

In the future, we plan to conduct an extensive set of em-
pirical tests to see how well the theoretical advantage of the
new algorithm transfers to practice. On the theoretical side,
our goal is to extend the regret table computation to more
complex cases like general graphical models. We will also
research supervised versions of the stochastic complexity, de-
signed for supervised prediction tasks such as classification.
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