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Abstract— Mobile agents acting in wireless ad hoc networks
are energy constrained, which leads to potential selfishness as
nodes are not necessarily willing to forward packets for other
nodes. Situations like this are traditionally analyzed using game
theory and recently also the ad hoc networking community
has witnessed game-theoretic approaches to especially routing.
However, from a theoretical point-of-view the contemporary
game-theoretic approaches have mainly ignored two important
aspects: non-simultaneous decision making and incorporating
history information into the decision making process. In this
article we propose a new model that fills these gaps and allows
to analyze routing theoretically.

I. INTRODUCTION

In wireless ad hoc networks [1] a collection of nodes,
i.e. mobile hosts, forms a self-organizing network without
any support from pre-established infrastructure. The lack of
infrastructure support forces the nodes to implement all net-
working tasks by themselves and for routing this means that
packets must be routed using other nodes as intermediate
relays. Simple routing schemes, such as the dynamic source
routing protocol [2], are sufficient only if all nodes are willing
to participate in the forwarding. However, nodes are energy
constrained by their battery level and want to maximize their
lifetime, which leads to potential selfishness as the nodes may
refuse to forward packets for other nodes. Simulations have
shown that network throughput rate often degrades signif-
icantly when simple routing schemes are used and even a
small portion of the nodes acts selfishly [3]. For this reason
methods for stimulating cooperation among the nodes are
required. A method for cooperation stimulation should have
a firm theoretical background. However, most of the existing
approaches are mainly verified by experimental evaluation,
which makes theoretical analysis of the systems difficult.

A routing decision is essentially a conflict situation that can
be modelled using tools from game theory. The contemporary
approaches have analyzed routing in a stage-wise manner
using so-called static games [4], in which routing is modelled
by looking at a single set of packets and where all relays
on the routing path act as if all nodes decide simultaneously
whether to forward the packets or not. Clearly this kind of
approach is unrealistic especially in multi-hop routing and
in dense ad hoc networks as there is delay between the
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sending of a packet by the source node and the packet
processing in an intermediate node. Within the delay time, the
energy level of an intermediate node usually decreases, which
causes important model parameters to change and makes the
assumption of simultaneous decision making no longer valid.
Another flaw in the existing approaches is that they mainly
ignore the temporal aspect (past actions) in game play or give
no proper justification for the model that is used. To overcome
these deficiencies, we propose a new model that uses dynamic
Bayesian games [4, Chap. 8]. Dynamic Bayesian games allow
formulating a generic model, in which no restrictions are put
on the delay between sending a set of packets and forwarding
them. Additionally, the new model allows analyzing optimality
in terms of past actions and makes it possible to take into
account various sources of uncertainty. The organization of
this paper is as follows: in Section II we discuss related work
on cooperation stimulation mechanisms and on game-theoretic
routing models of ad hoc networks. In Section III we introduce
the new model and in Section IV implementation issues related
to our model are discussed. In Section V we conclude the
paper and discuss future work. In the Appendix we present
game-theoretic material that is used in the optimality proof of
Section III.

II. RELATED WORK

The initial approaches for cooperation stimulation in ad
hoc networks use either a reputation mechanism [5] or some
kind of a virtual currency system. The approaches based on
reputation attempt to identify selfish nodes and to isolate
non-cooperative nodes from the network. Among the first
reputation approaches is the watchdog-mechanism in which
the forwarding rate of neighbouring nodes is monitored [6].
If a neighbour does not forward messages, it is considered
non-cooperative and information about the non-cooperative
reputation is propagated in the network. The information about
non-cooperative nodes is used by a pathrater that rates paths
between the source and the destination node. Together the
watchdog and the pathrater methods make it possible to avoid
paths with misbehaving nodes. From a theoretical perspective,
the main problem with this approach is that misbehaviour
is actually rewarded as no packets are routed through non-
cooperative nodes, but the packets of the non-cooperative
nodes are still forwarded. However, the general mechanism



of monitoring traffic from neighbouring nodes has been used
in many other approaches and it is also used in the approach
proposed in this article.

To overcome the problems with the watchdog approach,
more elaborate reputation mechanisms such as Core [7] and
Confidant [8] have been proposed. These methods extend the
watchdog approach so that each node calculates a reputation
value based on the information it has obtained about the
forwarding rate of another node. The lower the reputation
value of a node, the less likely it is that a packet is forwarded
for that node. The proposed approaches differ in, e.g. what
information is used, how the information is used, how hard
misbehaviour is punished and how re-integration of temporally
misbehaving nodes back in the network is performed. The
main problem with these approaches is that they lack a formal
model, which makes theoretical analysis difficult. In addition,
the decision making mechanism is not as flexible as in our
model.

The approaches using a virtual currency system model the
forwarding problem as an economic market, where sending
and forwarding cost money. The approach proposed by But-
tyán and Hubaux uses a currency called NUGLET [9]. Each
node is assumed to have a separate secure hardware module
that has a NUGLET counter. The counter increases when a
node forwards a packet for another node, and decreases when
a node sends a packet of its own. The NUGLET counter must
always be positive, so the approach forces the nodes to forward
at least the same amount of traffic as they send themselves.
A similar kind of solution was presented by Anderegg and
Eidenbenz [10], who derive a truthful Vickrey-Clarke-Groves
mechanism (VCG) [11]–[13] for routing. In their approach,
the first phase of routing is to ask the nodes for their costs
to forward packets. Based on this information the minimum
energy path is calculated. Due to energy constraints, the nodes
are attracted to cheating, but the authors prove that using
premium payments, i.e., additional pay to the nodes on the
minimum energy path, it is in the best interest of a node to
report the actual energy cost in the first phase. Another related
approach was proposed by Srinivasan, Nuggehalli, Chiasserini
and Rao [14]. Their approach uses a generous TIT-FOR-TAT
policy that guarantees (under certain conditions) cooperation
in a game that is played repeatedly. Essentially the TIT-FOR-
TAT policy [4, p. 173] means that if a node does not cooperate,
the other nodes will not forward packets for that node in the
next time frame (packet session). The generous version uses
slightly milder punishments.

All the virtual currency approaches use computational
mechanism design [15] methods for cooperation stimulation.
Although the authors of the articles do not usually formulate
a proper game-theoretic model, the approaches can be seen
as static repeated games [4, Chap. 5]. This formulation does
not properly take into account the uncertainty inherent in the
network, which is due to node mobility, energy constraints etc.
In addition, the assumption of simultaneous decision making
is hard to justify especially in dense ad hoc networks.

In a recent approach [16] the authors argue that TIT-

FOR-TAT strategies make threats that are not credible and
that TIT-FOR-TAT strategies lead to unrealistic models. The
solution the authors propose is to use milder punishments,
which are "partially cooperative". This means that nodes act
optimally according to their beliefs about the behaviour of
other nodes, but that their actions do not necessarily lead
to globally optimal behaviour, in which all resources are
optimally allocated.

A properly formulated game-theoretic model was intro-
duced by Urpi, Bonuccelli and Giordano [17], who use static
Bayesian games [18]–[20] to model forwarding behaviour. In
Bayesian games each node has a "secret type", which in this
case is the energy class (remaining energy) of a node. The
secret type affects decision making, but is only known to
the node itself. However, nodes have beliefs about the types
of neighbouring nodes and they base their decision making
on their beliefs. Although this model properly formulates the
game the nodes are playing, it still is very unrealistic as the
static framework does not allow non-simultaneous decision
making. In addition, the strategies in this framework are not
dependent on past behaviour. However, this approach is closest
to our approach as we also use energy classes and define
beliefs over the energy classes of neighbouring nodes.

As a conclusion we argue that the problems with existing
approaches are twofold. First of all, the models consider
only stage-games, in which a single packet is sent. Secondly,
the approaches assume that the stage-games are static by
nature. In our approach we consider dynamic stage-games with
incomplete information that are repeated finitely many times
and in which the model parameters are updated after each
stage-game ends. This way we can model the various sources
of uncertainty and take into account the past actions.

III. DEFINITION OF THE GAME

In this section we present a new framework that allows
non-simultaneous decision making and takes past actions into
account. We attempt to keep the discussion as general as
possible and for this reason we do not fix all the components
of the model, but instead give the conditions that must be
satisfied. We start by defining some notation.

Let N be an arbitrary ad hoc network and N a finite
set of nodes (agents) belonging to N ; thus we define N =
{1, · · · , n} and N ⊆ N . An arbitrary node of the set N
is indexed by the variable i. We assume that nodes have
topology information only about the nodes within the range
of their transmitter (local topology), but not about the nodes
outside this region. The nodes that are within the range of
the transmitter constitute the neighbourhood of a node i. The
variable Γi is used to denote the neighbourhood of node i. For
simplicity we assume that the neighbourhood topologies are
symmetric, i.e., j ∈ Γi ⇐⇒ i ∈ Γj .

The nodes are energy constrained as they have a limited
amount of energy available. In addition, the nodes are energy-
aware as they know their current energy level and try to
minimize unnecessary energy consumption. A node is said
to be rational if it maximizes throughput of its own messages



and minimizes unnecessary energy consumption. Moreover,
we assume that the level of remaining energy can be measured
at reasonable accuracy and, without loss of generality, we
assume that the energy level can be represented with a finite
set of possible values. The finiteness is achieved using a global
discretization method so that all nodes have the same set of
possible values. We call the discretized energy level the energy
class of a node and use the variable θi(t) to denote the energy
class of node i at an arbitrary time t. In the rest of the paper,
the energy class of a node is also called the type of a player
(node).

Sending and forwarding decisions in a network are analyzed
at discrete periods of time. We approach the situation from the
point of view of an individual node i and define for each i
a time period tk, k = 0, 1, · · · , so that a new period starts
when the node generates some packets and decides whether
to send them to the network or to discard them. The number
of packets generated by node i at time period tk is denoted
by gi(tk), and the number of the generated packets that are
actually sent to the network is denoted by si(tk). Thus, at each
time period the relation si(tk) ≤ gi(tk) holds. We define the
action history of a sending node i at time period tk to be a
vector that contains the number of packets sent at time periods
t0, · · · , tk−1:

hi(tk) = (si(t0), · · · , si(tk−1)) . (1)

For simplicity, we restrict the setting by assuming that each
message sent by an arbitrary node i is broadcasted to all
nodes j in the neighbourhood Γi. However, every node j
decides individually whether to forward the packets or not.
From the point of view of the sending node, the decision and
the corresponding forwarding action by a node j take place at
time period tk and we can define f i

j(tk) to be the number of
packets that node j forwards for node i at time period tk. The
sender’s decision of how many packets to send depends on its
beliefs about the energy classes of the neighbouring nodes; if
it believes that all neighbouring nodes have used all of their
energy or that they are non-cooperative, it is not rational to
send anything as sending consumes energy. The energy classes
of the neighbouring nodes are not a priori known, but instead
we assume that node i has a probability distribution defined
over the possible values of the energy class of a node j. The
probabilities of the energy classes at time period tk depend
on the joint history profile of the actions made by node i and
node j. The history profile is

h
i

j(tk) =
(
hi(tk), hi

j(tk)
)
, (2)

where hi
j(tk) is the number of packets that node j has

forwarded for node i at time periods t0, · · · , tk−1:

hi
j(tk) =

(
f i

j(t0), · · · , f i
j(tk−1)

)
. (3)

We define the beliefs a sending node i has about the energy
class of a forwarding node j as a probability distribution that is
conditioned on the energy class of i and the joint history profile

of nodes i and j. The formal definition of the conditional
probability distribution is

µj
i (tk) = p(θi

j(tk)|θi(tk),h
i

j(tk)), (4)

where θi(tk) is the energy class of a sending node i at time
period tk and θi

j(tk) is the energy class of a node j that is
forwarding packets for i at time step tk and p(·) is an arbitrary
probability distribution.

By defining a conditional probability density in the way
shown in Equation 4, we construct a belief system for the
node i. The beliefs reflect the level of knowledge a node has
in the beginning of a time period tk. In addition, the beliefs
play an important role when we want to define optimality of
our model in the Bayesian sense. We return to this issue later
in this section.

Similarly as the decisions made by the sender depend on the
sender’s beliefs about the energy classes of the neighbouring
nodes, the decisions of the forwarding nodes depend on the
beliefs the nodes have about the energy class of the sender. To
assure consistency of the belief system with respect to actions,
the model is constructed in such a way that the probabilities
depend on the number of packets sent by node i. The definition
of the probability distribution of a forwarding node j is given
in Equation 5.

φi
j(tk) = p(θi(tk)|θi

j(tk),h
i

j(tk), si(tk)). (5)

Together the beliefs of the sender and the forwarder constitute
the belief system of the nodes. We use µi

j to denote the joint
belief system of nodes i and j:

µi
j(tk) =

(
µj

i (tk), φi
j(tk)

)
. (6)

Each outcome of the game yields some utility for both of
the players. The value of the utility depends on the decisions
made by both the sender and the forwarder and, in addition, the
utility depends on the energy classes of the opponents, i.e. the
sender and the receiver. The exact form of the utility function
is not fixed, as suitable functions depend on the application.
However, it is required that the utility functions are continuous
and concave in the parameters. Furthermore, a good utility
function should consider both the possible savings in energy
consumption and the possible gain in future throughput.

In order for the network to operate independently, a node
cannot only send packets to the network and hope that others
forward the packets. Instead, each node must act both as
a forwarder and as a sender in the network. The situation
can be formulated in game-theoretic terms by defining each
sender-forwarder pair as a dynamic Bayesian game. Thus
each node i participates in 2#Γi games, where # is the
cardinality (number of elements) operator. We define the
game-theoretic system of a node i to be the collection of
games in which the node participates simultaneously and we
define the sending games of the system to be the #Γi games
in which the node i acts as a sender. The formal definition of
a sending game is given in Definition 1.



DEFINITION 1:
A sending game is a 5-tuple (I, A, ui

j, Θ, µi
j), where I is

the set of players, A defines the action space of the game, ui
j

defines a utility function for both players, Θ defines the type
space of the players and µi

j is the belief system of the game.

The set I consists of two nodes i and j, where j ∈ Γi

and the set A consists of action pairs (si(tk), f i
j(tk)) for

which the relation 0 ≤ f i
j(tk) ≤ si(tk) ≤ gi(tk) holds. The

utility function ui
j is defined as a vector containing the utility

functions for both players: ui
j = (ui, u

i
j) where ui is the utility

function of the sender and ui
j is the utility function of the

forwarder j for the messages arriving from sender node i.
The type space Θ is equivalent to the set of possible energy
class values for a node and the belief system µi

j was defined
in Equation 6. Similarly to the sending game, we can also
define a forwarding game as a game in which node i acts as
a forwarder for some neighbouring node j.

Game-theoretic models are analyzed using equilibrium con-
cepts, which can be seen as optimal "agreements" between
the opponents of the game. In an equilibrium situation the
actions of the individual players are such that no player can
gain by changing her strategy. In our model the sending and
receiving games are played in a stage-wise manner, which
means that an instance of the corresponding type of game is
played repeatedly at discrete periods of time. Accordingly, we
need to define optimality with respect to the individual stage-
games and with respect to the ongoing series of games. Thus
agents must act optimally at each individual time period and
their actions also need to be optimal given the history of game
play.

A new period of a game begins when the sender decides how
many packets to send to the network. The period ends when
the forwarding side decides whether to forward the packets or
not. If the packets are forwarded, the action can be observed
by the sender due to broadcasting and in this case the outcome
of the game is directly observable. On the other hand, if the
packets are not forwarded, this can also be observed using
timers and packet numbering.

As stated earlier, in order to define the equilibrium of our
model, we need to describe the optimal actions of the players
so that the actions are optimal at each period and optimal
in every game starting from period tk given the history of
game play. We formulate the action profiles of the players as
behaviour strategies, which are defined as probabilities of the
form px(ax|hi

j(tk), θx), where px(·) is a suitable probability
distribution, i is some sending node, j is forwarding node and
x is either the node i or the node j. The variable ax denotes
the action of x and the variable h

i

j(tk) is the history profile
which was defined in Equation 2. If x is a sender, the action
ax corresponds to the number of packets sent at period tk
given the history of game play and if x is a forwarder, ax

refers to the number of packets forwarded for the sender at
period tk given the history of game play and the action of the
sender. The utility of x is defined as a function of the history,

the actions and the energy classes of the nodes. Hence we
can write the utility function of a node x, given sender i and
receiver j, in the form given in Equation 7.

ux = u(hi
j(tk+1), ai, aj , θi, θj). (7)

Here u is a suitable type of utility function (continuous and
concave in the parameters), i is an arbitrary sender and j is
an arbitrary forwarder.

The games starting at time period tk+1 are not proper
games if we do not specify the beliefs that the players have
at the beginning of the new game. We assume that players
have perfect recall, which means that as time passes by, the
amount of information the players have can only increase.
Thus at period tk a node has at least the same amount of
information available as it had at the beginning of period
tk−1. The advance to the period tk+1 game does not give
any additional information to the forwarder, but at the end
of period tk the sender observes the action the forwarder
performed. To keep the belief system in a consistent state, the
sender’s beliefs about the energy class of the forwarder must
be updated. The update is made using the Bayes’ rule, and the
resulting posterior probabilities of period tk are used as prior
probabilities at the beginning of stage tk+1. The necessary
calculations are carried out using Equation 8.

µj
i (tk+1) = p(θi

j(tk)|hi
j(tk), f i

j(tk))

=
p(hi

j(tk), f i
j(tk)|θi

j(tk))p(θi
j(tk))

p(hi
j(tk), f i

j(tk))
(8)

Whereas the sender obtains new information each time the
game advances to the next period, the forwarder obtains new
information within the individual periods. We require that also
the forwarder’s beliefs are kept in a consistent state meaning
that the probabilities are updated using the Bayes’ rule every
time the forwarder observes an action made by the sender.
Again the posterior probabilities of period tk form the prior
probabilities of stage tk+1 and the actual calculations are
carried out in a similar fashion as in Equation 8.

We assume that the support of an individual node’s action
space equals the complete action space. Thus, for all nodes
x, we have supp(Ax) = A, where the support is defined in
Equation 9.

supp(Ax) = {a | px(a) > 0, a ∈ A} . (9)

The assumption that the support equals the complete action
space means that all the actions performed by the players have
positive probabilities. This is realistic because we look at the
entire time span a node is connected to a network. Thus it
is reasonable to assume that a node can fail or that a node
can change its behaviour policy in the course of time. This
assumption significantly simplifies the analysis of the model
as it makes the perfect Bayesian equilibrium a strong enough
equilibrium concept. Otherwise stronger equilibrium concepts,
such as the sequential equilibrium [21], that allow unexpected
actions must be used. Moreover, if we assign positive prior



probabilities over the elements of the action space, the proba-
bility of a totally unexpected action approaches zero in infinity,
but the game is repeated only a finite number of times. Thus
the probability remains instead a small positive value.

In addition, we assume that the types of a player are sta-
tistically independent and thus uncorrelated. The assumptions
we have made are general assumptions that are usually made
in game-theoretic systems that use dynamic Bayesian systems.
In addition, from the definition of the belief system and the
update rule, it follows that our model satisfies the Bayesian
conditions B1−B4 given in the Appendix.

To analyze optimality of our model, we would like to apply
subgame perfection [22] and especially its extension to perfect
Bayesian equilibrium to our model. A game is said to be
subgame perfect, if the restriction of strategies to a single
stage (time period) constitutes a Nash-equilibrium. Thus if
we "forget" the previous play and look only at the current
situation, the actions the players perform must form an optimal
agreement between the players. Perfect Bayesian equilibrium
(PBE) extends subgame perfection to games with incomplete
information. In PBE, each stage game played at a single period
must constitute a Bayes-Nash equilibrium. In other words,
when the actions are restricted to a single time period they
must be optimal given the beliefs the players have at the
beginning of that time period. In a Bayes-Nash equilibrium
optimal strategies can be defined as behaviour strategies that
maximize the expected utility of a player. According to this
definition, the sender’s optimal strategy is the number of
packets it should send to the network in order to maximize
its utility. However, before we can define the optimal actions
in a broadcast model, we need to define optimality in a unicast
model.

In a unicast communication model the sender and the
forwarder communicate directly with each other. In this model
the optimal strategy of the sender is given by Definition
2. For notational simplicity, the time indices tk have been
omitted from all variables in the remainder of this Section.

DEFINITION 2: The optimal behaviour policy of the
sender at time period tk is

ŝj
i = arg max

si

∑
fi

j

∑
θi

j

σi
j(f

i
j |si)µj

i ui.

The probabilities µj
i were defined in Equation 4 and the term

σi
j is a behaviour strategy of player j in the game where node i

acts as the sender. The behaviour strategy tells the probability
that node j performs the action f i

j given the action of the
sender i. Finally, the term ui is the utility function of node i
which was defined in Equation 7.

In the broadcast model it is rational to send packets if
some neighbouring node is willing to forward them. The
optimal sender strategy in the broadcast model is defined as
the maximum of the optimal strategies of individual "unicast"
games. This modification is given in Definition 3.

DEFINITION 3: The optimal behaviour policy of the
sender at time period tk in a broadcast model.

ŝi = max
j

ŝj
i

In Definition 3 we have made the assumption that packets are
numbered and that the decision making process of forwarding
nodes considers the individual packets in numbering order.

The optimal strategy of the forwarder can be defined
in a similar manner. The forwarder makes a decision only
after the sender has already made some action. The action
performed by the sender is observable so the forwarder
has more information available than the sender. Again, the
optimal behaviour strategy of the forwarder is the strategy
that maximizes the expected utility given the current beliefs.
The form of the utility should be such that it measures
expected gain in future throughput. The formal definition of
the optimal strategy is given in Definition 4 where the term
φi

j was defined in Equation 5.

DEFINITION 4: Optimal behaviour policy of the for-
warder at time period tk.

f̂ i
j = arg max

fi
j

∑
θi

σj
i (si|θi)φi

ju
i
j .

Here σj
i (si|θi) is the behaviour strategy of the sender which

tells the probability that node i sends si packets (at time period
tk) given her energy class θi.

Together with the belief system µi
j, the pair (ŝi, f̂j)

constitutes the Bayes-Nash equilibrium of a stage-game.
Moreover, if the conditions B1-B4 in the Appendix are also
satisfied, the game system constitutes a perfect Bayesian
equilibrium. At this point we can state the following theorem:

THEOREM 1: The described game-theoretic model admits
a perfect Bayesian equilibrium.

Proof: Every finite game has a sequential equilibrium [21]
and every game that has a sequential equilibrium has a perfect
Bayesian equilibrium which proves the existence of equilib-
rium strategies in the model (necessary conditions). The proof
that the model satisfies the Bayesian conditions B1 - B4 is
given in Lemma 1 in the Appendix. In addition, the strategies
in each stage game are optimal given the beliefs by definition
and thus satisfy the Bayesian subgame perfection criterion.
Together subgame perfection and the Bayesian conditions are
sufficient conditions and accordingly each game in the model
admits a PBE.

IV. ROUTING MODEL AND IMPLEMENTATION ISSUES

The theoretical model presented in the previous section
has two main contributions. First of all it allows theoretical
analysis of various routing protocols. Secondly, it makes
it possible to implement new "intelligent" routing protocols
that can be theoretically justified. In this section we discuss
implementation issues related to our model by introducing a



pseudo-protocol that implements all relevant aspects of our
model.

The pseudo-protocol consists of two phases. In the first
phase a node joins an ad hoc network by discovering its
neighbours and by assigning prior probabilities over the energy
class values of the neighbours. As in the previous section,
we assume that each packet is broadcasted to all neighbours
and thus, to discover its neighbours, a node i first sends a
JOIN message to the network. The nodes that respond form
the neighbourhood Γi. Additionally, the node i constructs a
prior probability distribution over the energy class values of
the neighbours. The general form of the initialization phase is
presented in Algorithm 1.

Algorithm 1 Joining the network for node i

Send JOIN message
Γi := ∅
while receives messages M do

j ← sender of message M
Γi := Γi ∪ {j}
Construct µj

i

end while

We consider three alternatives for assigning the prior prob-
abilities. In the first approach we assign uniform priors over
the possible values. This is possible because the discretization
method was assumed to be common knowledge and globally
the same. The other two approaches assume that the responses
contain information about the energy class of the sender, in
which case we can either believe the information or "filter"
it using a suitable probability distribution. If we believe what
the sender says, we must find a suitable family of distributions
so that the prior probabilities can be assigned easily and
efficiently. A possible choice is to use, e.g., a Beta-distribution,
which can be done in the following way. Assume that r is
the percentage representing the energy level of a node. A
new Beta-distribution can be initialized by assigning initial
parameter values so that α = 100 r and β = 100(1− r). This
way the shape of the distribution is smooth and the mode
(peak) is at the interval that best describes the energy level of
the node.

In the last approach considered in this article, the message
sent by node j is not believed. In this case a weighing
probability distribution is used to "filter" the value. A weigh-
ing probability distribution is defined as a joint distribution
p(θi

j , θi), where the value of θi is known. Now the initial
probability of a particular energy class can be assigned by
marginalizing the joint distribution with respect to the values
of θi. The marginalization procedure is illustrated in Equation
10 and the different initialization approaches are presented in
Algorithm 2.

p(θi
j) =

∫
p(θi

j , θi)dθi =
∫

p(θi
j |θi)p(θi)dθi (10)

The described operations are assumed to be symmetric in
the sense that also the nodes already existing in the network

Algorithm 2 Initialization of priors for j

Uniform initialization
p(θjk) = 1/m for all types k = 1, · · · ,m

Simple probability initialization

{r is the rounded percentage of the energy}
α = 100r
β = 100(1− r)
p(θj) ∼Beta(α, β)

Weighed probability initialization

for all types k = 1, · · · ,m
p(θjk) =

∫
p(θjk, θi)dθi =

∫
p(θjk|θi)p(θi)dθi.

must perform the same operations. Thus each time a node
receives a JOIN-message, it must construct a new probability
distribution for the new node.

The second phase of the pseudo-protocol is a working phase.
After a node has joined the network it is ready to work as an
ordinary peer. This means that the node listens to incoming
traffic and when it notices messages that require an action it
decides what action to perform (if any). In addition, at certain
periods of time the node generates traffic (packets of its own)
that must be sent to the network.

The decisions made in the forwarding process depend on
the type of the message. If the message is a JOIN-message,
the node must respond by sending the corresponding response
message (see discussion above). If the message is a forward
request, the node must update its belief system and decide
whether to forward the message or not. The decision is based
on Definition 4 and the general form of the forwarding process
is presented in Algorithm 3.

The last type of message that needs to be discussed is
that the message m is a forwarded message that node i has
generated. This means that the stage game at period tk ends
and that the node must update its beliefs about the energy
class of the neighbour that forwarded the message. Even with

Algorithm 3 Node j: forward messages for node i

Input: si messages m from node i at period tk:
Calculate posterior:

p(θi|si(tk)) =
p(si(tk)|θi)p(θi)

p(si(tk))

{Use the posterior as a new prior}
Decide:
Calculate optimal action using Definition 4.



broadcasting, the update operations are carried out in a pair-
wise manner to assure correctness of beliefs. This means that
at this point only the probability of node j is updated. To
allow "late" updates, meaning that the node has gone on to
state tk+s for some s > 0 and that it receives a forwarding
decision of the stage tk from another node, we need to have
a well-defined packet numbering.

The main practical difference of our model with regards
to other routing protocols is the extensive use of probability
distributions. However, probability calculations are easily time
(and energy) consuming so it is of utmost importance to im-
plement the probability distributions as efficiently as possible.
Another important factor that has a large effect on efficiency is
the number of packets a node can send within a single frame
and the number of possible energy classes. In practice, if the
number of possible values is sufficiently small, the calculations
can be often implemented efficiently enough by enumerating
all alternatives.

V. CONCLUSIONS AND FUTURE WORK

In this article we presented a new theoretical model that
can be used to analyze routing behaviour in wireless ad hoc
networks. We did not fix the form of the utility functions or
the form of the probability functions as it is hard to give a
theoretical justification to why a particular kind of functions
or distributions should be used. The model presented in this
article can be extended to take into account related sources
of uncertainty, such as node mobility. It is only required that
a probability distribution is defined over the new source of
uncertainty and that the probabilities are updated using the
Bayes’ rule whenever possible. As long as the beliefs are
consistent with the information obtained and the actions are
optimal given the beliefs, the model is theoretically consistent.
However, the theoretical bounds of optimality of the probabil-
ity system are less attractive when the finiteness of the games
is taken into account and in practice the prior probabilities
need to be carefully assigned, especially as the number of
sources of uncertainty increases.

In the future, our goals are both theoretical and practical.
The main practical goal is to test different utility functions and
probability distributions and to compare them in networks with
different network parameters such as the number of selfish
nodes or rate of node mobility. In addition, our goal is to
compare the new model to existing approaches. The theoret-
ical goals are to extend the model into a multi-hop model
and to analyze behaviour strategies and belief systems more
thoroughly. In addition, our goal is to extend the theoretical
model so that node mobility is taken into account.

The main contribution of this article is the definition of
a formal routing model, in which decision making is non-
simultaneous and the game play is modelled as a series of
games where the nodes remember the previous actions of
the game and where the model parameters are continuously
updated.
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APPENDIX

PERFECT BAYESIAN EQUILIBRIUM

A perfect Bayesian equilibrium must satisfy the subgame
perfection criterion and in addition the model must satisfy
four Bayesian postulates, which are given below.

B1 For each information set, the players must have
beliefs about the node the game has reached.

B2 Whenever it is a player’s turn to move, her actions
must be optimal from that point onwards given her
beliefs.

B3 The player’s beliefs about reachable (on-the-path)
nodes, must be determined using the Bayes’ rule.

B4 The player’s beliefs about unreachable (off-the-path)
nodes must be determined using the Bayes’ rule,
whenever possible (whenever probabilities are pos-
itive).

LEMMA 1: The model proposed in Chapter III satisfies the
Bayesian postulates B1-B4:

Proof: The condition B1 is trivially satisfied as all infor-
mation sets are singleton sets and we can assign probability
one to each node. The condition B2 follows directly from
Definitions 2 and 4. We assumed that the support of the action
space of an arbitrary node equals the common action space
which implies that there are no off-the-path nodes and thus
condition B4 is satisfied. Finally, B3, follows directly from
the way the beliefs system was constructed in Equations 4, 5
and 6.


