
Approximating a Collection of Frequent Sets

Foto Afrati
∗

National Technical
University of Athens

Greece

afrati@softlab.ece.ntua.gr

Aristides Gionis
HIIT Basic Research Unit

Dept. of Computer Science
University of Helsinki

Finland

gionis@cs.helsinki.fi

Heikki Mannila
HIIT Basic Research Unit

Dept. of Computer Science
University of Helsinki

Finland

mannila@cs.helsinki.fi

ABSTRACT
One of the most well-studied problems in data mining is
computing the collection of frequent item sets in large trans-
actional databases. One obstacle for the applicability of
frequent-set mining is that the size of the output collection
can be far too large to be carefully examined and understood
by the users. Even restricting the output to the border of
the frequent item-set collection does not help much in alle-
viating the problem.

In this paper we address the issue of overwhelmingly large
output size by introducing and studying the following prob-
lem: What are the k sets that best approximate a collection of
frequent item sets? Our measure of approximating a collec-
tion of sets by k sets is defined to be the size of the collection
covered by the the k sets, i.e., the part of the collection that
is included in one of the k sets. We also specify a bound
on the number of extra sets that are allowed to be covered.
We examine different problem variants for which we demon-
strate the hardness of the corresponding problems and we
provide simple polynomial-time approximation algorithms.
We give empirical evidence showing that the approximation
methods work well in practice.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; F.2.2 [Analysis of Algorithms and Prob-

lem Complexity]: Nonnumerical Algorithms and Prob-
lems

General Terms
Algorithms

∗Part of this work was done while the author was visiting
HIIT Basic Research Unit, Department of Computer Sci-
ence, University of Helsinki, Finland.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...

�
5.00.

Keywords
Foundations of data mining, mining frequent itemsets

1. INTRODUCTION
The notion of discovery of frequent patterns started from

the work of Agrawal, Imielinski, and Swami [1] on finding as-
sociation rules and frequent item sets. The same basic idea
of searching for patterns which occur frequently enough in
the data carries over to several pattern domains (see e.g., [2,
11, 13, 4]). The collection of frequent patterns can be used
in at least two different ways: first, one can be interested
in the individual patterns and their occurrence frequencies;
second, one can be interested in the whole collection, trying
to obtain a global view of which patterns are frequent and
which are not. The algorithms for finding frequent patterns
are complete: they find all patterns that occur sufficiently
often. Completeness is a desirable property, of course. How-
ever, in many cases the collection of frequent patterns is
large, and obtaining a global understanding of which pat-
terns are frequent and which are not is not easy. Even re-
stricting the output to the border of the frequent item-set
collection does not help much in alleviating the problem.

In this paper we consider the problem of finding a suc-
cinct representation of a collection of frequent sets. We aim
at finding small and easy-to-understand approximations of
the collection. The premise of our work is that such small
approximations give a better understanding of the global
structure of the data set without a significant sacrifice of
information. Indeed, the collection of frequent patterns is
always computed with respect to a frequency threshold, i.e.,
a lower limit on the occurrence probability of the pattern.
This threshold is almost always somewhat arbitrary, and
thus, there is no single “correct” collection of frequent pat-
terns. Hence, one can argue that there is no reason to in-
sist on computing the exact collection with respect to that
threshold.

Our measure of approximating a set collection by k sets
is defined to be the number of sets in the collection that are
included in at one of the k sets. To avoid overgeneralization,
we restrict the number of false positives allowed. As a simple
example, consider the collection of frequent sets containing
the sets ABC, ABD, ACD, AE, BE, and all their subsets
(i.e., these five sets are the border of the collection). We
can represent this collection approximately as the set of all
subsets of ABCD and ABE; this covers all the original sets,
and there are only two false positives.

We show that while the problem of finding the best k-

set approximation for a given collection is NP-hard, simple
algorithms can be used to obtain very good approximation
quality (1 − 1/e). On real data, our empirical results show
that using only k = 20 sets (corresponding to 7.5% of the size
of the border of the collection), and allowing a false-positive
ratio of 10%, one can cover the 70% of the original frequent
set collection. Relatively simple visualization techniques can
be used to give a good intuitive feel for collections of 20–50
sets, and hence it seems that our approach yields a good
summary of the frequent set structure of large 0-1 data sets.

Our algorithm is based on the greedy approximation strat-
egy, importance sampling, and a combinatorial lemma on
the structure of collections of frequent sets. The method is
simple but its analysis is somewhat intricate.

Next, we describe the problem in more detail. We are
given a set U of N attributes A1, . . . , AN and a database
consisting of transactions, which are subsets of U . The
collection D of frequent sets consists of all attribute sets
X such that at least a fraction of σ of the transactions in
the database contain X as a subset. Then D is downwards
closed, i.e., if X ∈ D and Y ⊆ X, then Y ∈ D. Given the
collection D, we define the border B+(D) of D as the collec-
tion of maximal sets in D, i.e., B+(D) = {X ∈ D|D∩I(X) =
{X}}, where I(X) denotes the collection of supersets of X.
Finally, given a set X, we denote by P(X) the powerset of
X. We refer to the lattice � U as the partial order naturally
defined on the powerset P(U) using the subset relation “⊆”.

We are interested in describing succinctly the downwards
closed collection D, and in order to do so successfully we are
willing to tolerate some error. A natural way of representing
D is to write it as the union of all subsets of k sets Z1, . . . , Zk.
That is, denoting

S(Z1, . . . , Zk) ≡
k�

i=1

P(Zi)

we look for sets Z1, . . . , Zk such that D ≈ S(Z1, . . . , Zk). We
say that S(Z1, . . . , Zk) is spanned by the k sets Z1, . . . , Zk,
and we call S(Z1, . . . , Zk) a k-spanned collection. The prob-
lem of succinct representation of D can now be formulated
as follows:

Problem 1. Given a downwards closed collection of sets
D, find a collection of sets A such that A is spanned by at
most k sets and A approximates D as well as possible.

To make the statement of Problem 1 concrete we need
to define the notion of distance between the input set col-
lection D and a solution set collection A. We measure the
quality of approximation between two set collections A and
D using the coverage measure C(A,D), defined as the size
of the intersection between A and D. Naturally the goal is
to maximize coverage.

Next, one has to define which sets are allowed as span-
ners. Without the restriction that the spanners of A should
belong to D, one can very easily maximize coverage by set-
ting A = � U , which is a solution that covers the whole D
and it is spanned by just one set. However, A = � U is
not an intuitive solution, since it introduces the maximum
possible number of false positives (the sets in A \ D). The
first choice to avoid this kind of unintuitive solutions is to
restrict the spanners of A to be sets from D and therefore
we have A ⊆ D. Under the restriction A ⊆ D the goal of
maximizing the coverage is equivalent with maximizing |A|.

Obviously the spanners of A∗ (the k-spanned collection that
best approximates D) reside at the border of D, and thus it
is sufficient to restrict our search in the border of D.

A middle road between restricting the spanners of A to
be in D and having to choose A = � U is to restrict the
selection of spanners of A in some other collection D′ that
is a supercollection of D. The choice of D′ can be nat-
ural in some applications. For example, if D is a collec-
tion of frequent item sets for a support threshold σ, D′ can
be the collection of frequent item sets for a smaller sup-
port threshold σ′. In other cases D′ can be defined implic-
itly in terms of D, for example, one could use all super-
sets of sets of D having at most t additional elements, i.e.,
D′ = Dt ≡ {X | there exists set Z for which Z ⊆ X, Z ∈
D, and |X \ Z| ≤ t}. We will mainly consider a third alter-
native, where D′ consists of those sets which have a suffi-
ciently small fraction of false positives. We write CD′(A,D)
to make explicit that the spanners of A are chosen from the
collection D′. As before, it is sufficient to search for the
solution in the border of D′.

We now briefly describe the results of the paper: We dis-
tinguish between the case that the input to our problem is
specified by the whole collection D and the case that the
input is specified only by the border of D. As the size of the
collection can be exponential on the size of its border, the
second case is more challenging.

• For the first case and when the spanning sets are se-
lected from D, we show that the problem of finding
the best approximation A spanned by k sets is NP-
hard, but it can be approximated to within a factor of�
1 − 1

e � .

• When the spanning sets are selected from those subsets
for which the false-positive ratio is smaller than α, we
show a compact lemma stating that the number of such
sets is bounded by the square of the size of D. The
lemma yields a

�
1 − 1

e � approximation result.

• For the case that the input is specified by the border
of D, we are able to obtain an almost identical result—
the price of specifying the collection D by giving only
its border, i.e., with no redundancy, is only an ε loss in
the approximation factor, for any ε > 0. For showing
this we use techniques from importance sampling in
combination with the results from the previous case.

• We give empirical results demonstrating that a frequent-
set collection can be approximated well by a small
number of maximal sets. We performed experiments
on three real data sets. As mentioned above, a typical
result shows that using only k = 20 sets (correspond-
ing to 7.5% of the size of the border of the collection),
and allowing a false-positive ratio of 10%, we could
cover the 70% of the total frequent set collection. Al-
though the exact numbers depend on the input data
set, similar trends showed in all cases.

The rest of this paper is organized as follows. In Section 2
we define the problem variants in more detail. Section 3
considers the case when D is given as input, and Section 4
the case where the input is the border of the collection. In
Section 5 we describe our experiments, and in Section 6
we discuss related word. Finally, in Section 7 we offer our
concluding remarks.

2. PROBLEM VARIANTS
We distinguish two variants of the problem depending on

how the collection D is specified. In Section 3 we show that
the task of approximating D is NP-hard, so polynomial time
approximation algorithms need to be designed. However,
the different ways of specifying D might change the size of
the input at an exponential rate, so different techniques are
required for each problem variant. Below we describe the
two variants in order of increasing difficulty, (or equivalently,
in order of decreasing input size).

Collection. The complete collection D is given as in-
put. Considering as input the complete D creates a lot of
redundancy since D can be precisely specified by its border
B+(D). However, the exact requirement in this variant is
that our algorithm should be polynomial in |D|.

Border. The border of D is given as input. In this case
we allow the running time of our approximation algorithm
to be O(poly(|B+(D)|)). The main problem here is that
the size of D might be exponential in the size of B+(D),
therefore different techniques are required in order to stay
within polynomial running time.

To unify our notation and distinguish more easily among
the two cases, we restate Problem 1 as follows:

Problem 2. Given a downwards closed collection of sets
D, find a collection of sets A, such that A is spanned by at
most k sets and A approximates D as well as possible. We
call the problem Aprx-Collection when the whole collec-
tion is specified as input, and Aprx-Border when only the
border of the collection is given as input. The quality of
approximation is measured according to the coverage mea-
sure C. The optimal solution to the problem for all cases is
denoted by A∗.

3. WHOLE COLLECTION AS INPUT

3.1 Selecting spanners from the collection
We first consider the case that the spanner sets in the

solution A are restricted to be inside D. The problem to
solve is that of selecting the k sets in D that maximize the
intersection with D. We can notice immediately that this
problem is a special case of Max k-Cover. An instance of
Max k-Cover is specified by a collection of sets, and the
goal is to select the k sets in the collection that maximize the
number of covered elements. A well-known algorithm for the
Max k-Cover problem is the greedy algorithm, which can
be described as follows: Initially, the algorithm puts all the
elements in a list of uncovered elements. Then it proceeds
in performing k iterations, where in each iteration one new
set is added to the solution. During the j-th iteration, for
1 ≤ j ≤ k, the algorithm i) finds the set Aj that covers
the most uncovered elements, ii) adds Aj to the solution,
and iii) removes the elements covered by Aj from its list
of uncovered elements. The greedy algorithm is known to
provide a

�
1 − 1

e � approximation ratio to Max k-Cover

(e.g., see [9, pg. 136]), so the following is immediate.

Theorem 1. For Aprx-Collection as defined in Prob-
lem 2, we can find a collection A spanned by k sets such that
C(A,D) ≥

�
1 − 1

e � C(A∗,D).

Next we show that Aprx-Collection is indeed an NP-
hard problem. Notice that the connection with Max k-

Cover described above does not imply immediately the NP-
hardness result, since it is not clear how to transform an
arbitrary collection to a downwards closed collection.

Theorem 2. Aprx-Collection is NP-hard.

Proof. We show a transformation from the 3D Match-

ing problem [6]. An instance of 3D Matching is specified
by a set of “edges” E ⊆ X × Y × Z, where X, Y , and Z
are disjoint sets having the same number q of elements. The
goal is to determine if there is a complete matching for E,
i.e., a subset M ⊆ E of cardinality |M | = q such that no
elements in M agree in any coordinate. The transformation
to Aprx-Collection is defined as follows:

Consider an instance I = (X, Y, Z, E) of 3D Matching.
An instance of Aprx-Collection can then be defined by
considering a collection of sets D(I) over the universe of el-
ements U = X ∪ Y ∪ Z. For each edge e = (xi, yj , zk) ∈ E
we add in the collection D(I) the subcollection D(e) =
P({xi, yj , zk}) = {{xi, yj , zk}, {xi, yj}, {xi, zk}, {yj , zk},
{xi}, {yj}, {zk}, ∅}, that is D(I) = � e∈E

D(e). By con-
struction, the collection D(I) is downwards closed. The
value of k required for Aprx-Collection is set to q, and
the target value of C(A,D(I)) for a solution A is set to
7q + 1.

The transformation can be clearly computed in polyno-
mial time. Furthermore, we can show that in the instance
I there exists a complete matching if and only if in the col-
lection D(I) there exists a collection A that is spanned by q
sets and it has coverage at least 7q+1. To prove the equiva-
lence, disregarding the ∅ set that is covered by selecting any
other set, any set in the collection D(I) covers at most 7
sets. Therefore, the only way to obtain a solution A that is
spanned by q sets and it has coverage value 7q +1 is that all
of the q spanners of A are 3-element sets and their power-
sets are pairwise disjoint. However, such a solution in D(I)
corresponds to a complete matching in I. The proof of the
converse is based on the same idea, i.e., a complete match-
ing in I corresponds to disjoint (except the ∅ set) 3-element
spanners in D(I).

3.2 Selecting spanners outside the collection
In this section we consider the case that the spanner sets

for a solution A are allowed to be outside the collection
D. A motivating example for investigating this case is the
following.

Example 1. Imagine the contrived but illustrative situa-
tion that all sets of size t of the lattice are frequent, and no
sets of size t′ > t are frequent. Intuitively, we say that the
collection of frequent item sets is “flat”. In this situation, it
is reasonable to consider reporting a set of size t + 1, even
though such a set is not frequent itself. Quantitatively, by
reporting one infrequent set (one false positive), we capture
t + 1 frequent sets of the border. If t is large enough, one
could also consider reporting a set of size t + 2: in that way
by having t+3 false positives, we capture

�
t+2
2 � frequent sets

of the border.

Assuming that the collection of candidate spanners D′ is
somehow specified to the problem instance, one can use the
greedy algorithm described in the previous section and ob-
tain a similar kind of approximation guarantee for the mea-
sure CD′(A,D). Two methods of specifying the collection

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

C3

X
C4

C2

C1

D

Y = X ∪ {e}

Figure 1: A schematic view of the concepts used in

the proof of Lemma 1.

D′ were mentioned earlier. The first method is to reduce the
support threshold from σ to σ′ and consider as D′ the (bor-
der of the) σ′-frequent item sets. The second method is to
extend all sets in D by considering some of their supersets.
However, one can verify that in both of these methods the
size of the collection D′ can potentially be superpolynomial
in the size of D. On the other hand, the running time of the
greedy algorithm is polynomial in both |D| and |D′|, there-
fore one cannot guarantee that the running time remains
polynomial in the size of D. In the rest of this section, we
will describe an intuitive definition for the candidate collec-
tion D′ that guarantees that its size is polynomial in the size
of D, and therefore the running time of the greedy algorithm
is polynomial.

After looking again at Example 1, it seems intuitive to
consider adding in D′ a set S that is not in D, only if S
covers a large part of D while it does not introduce many
additional sets. To formalize this notion, for each set S we
define the false-positive ratio function f+(·) to be the ratio
of the number of sets not in D over the number of sets in D
covered by S. In other words

f+(S) ≡
|P(S) \ D|

|P(S) ∩ D|
.

Notice that the false-positive ratio of a set S can always be
defined since at least the empty set belongs simultaneously
in D and in P(S). For a set S, f+(S) = 0 is equivalent to
S ∈ D.

A collection of candidate spanners can now be defined us-
ing the notion of false-positive ratio. Given a false-positive-
threshold value α, we define the collection of candidates Dα

to be

Dα ≡ {S | f+(S) < α}.

That is, sets in Dα introduce at most a fraction of α false
positives over the sets in D that they cover. The threshold α
can take any positive value, however, as we will see shortly,
we are particularly interested in D1, i.e., candidates whose
false-positive ratio is smaller than 1.

We will first show that the collection Dα is downwards
closed, and thus it can be computed using a simple APriori-
type algorithm.

Lemma 1. For any threshold value α > 0, the collection
Dα is downwards closed.

Proof. Assume that there exists a collection D and a
value α for which the hypothesis of the lemma is not true.
Then there should exist two sets X and Y such that f+(X) ≥
α, f+(Y) < α, and Y = X ∪ {e}, that is, Y extends X by
just one element.

We partition the powerset P(Y) into four disjoint collec-
tions: C1 = {S ∈ P(Y) | e 6∈ S and S ∈ D}, C2 = {S ∈
P(Y) | e 6∈ S and S 6∈ D}, C3 = {S ∈ P(Y) | e ∈ S and S ∈
D}, and C4 = {S ∈ P(Y) | e ∈ S and S 6∈ D}. Define
si = |Ci|, for i = 1, 2, 3, 4, and observe that

f+(X) =
s2

s1
, and f+(Y) =

s2 + s4

s1 + s3
.

Finally, define Cē = C1 ∪ C2 (which, in fact, is P(X)) and
Ce = C3 ∪ C4 (that is, P(Y) \ P(X)). For a visualization aid
of the above concepts and definitions see Figure 1.

Notice that given our definitions, each set A in the collec-
tion Cē has a “copy” set A ∪ {e} in the collection Ce, and
vice versa. This one-to-one mapping of Cē to Ce implies that
s1 + s2 = s3 + s4. The crucial observation for the proof of
the lemma is that since D is downwards closed, for each set
in Ce that also belongs to C3, its “copy” in Cē should belong
to C1. In other words, the “copies” of the sets in C3 is a
subset of C1, which implies that s1 ≥ s3. Combining the
facts s1 + s2 = s3 + s4 and s1 ≥ s3 we obtain s2 ≤ s4, and
therefore

s2 + s4

s1 + s3
≥

2s2

2s1
= f+(X) ≥ α.

However, the above conclusion contradicts with our initial
assumption that s2+s4

s1+s3
= f+(Y) < α.

One potential obstacle in using the definition of Dα, is
that, although it is intuitive, it does not provide us with
an obvious upper bound on the number of candidates to be
used. However, we next show how to overcome this problem
and obtain such a bound for the special case of false-positive
threshold value α = 1. Our bound is based on the rather
interesting containment property of D1.

Lemma 2. Any set in D1 can be expressed as the union
of two sets in D, that is,

D1 ⊆ {X ∪ Y | X, Y ∈ D}.

Proof. Consider a set Z for which there are not exist
two sets X, Y ∈ D such that Z = X ∪ Y . We will show that
f+(Z) ≥ 1, and so Z 6∈ D1. Define the partition of P(Z)
into the disjoint collections D+(Z) = P(Z)∩D and D−(Z) =
P(Z) \ D. Notice that f+(Z) = |D−(Z)|/|D+(Z)|. Let X
be any set in D+(Z). The complement of X with respect to
Z (i.e., the set Z \ X) should belong to D−(Z), otherwise
the assumption for Z would be violated. Therefore, i.e., by
complementation with respect to Z, we correspond each set
from D+(Z) to a set in D−(Z), and no two sets from D+(Z)
correspond to the same set in D−(Z). Thus |D−(Z)| ≥
|D+(Z)| or f+(Z) ≥ 1.

Corollary 1. We have |D1| = O(|D|2).

Using the fact that the collections Dα are downwards
closed, it is clear to see that Dα ⊆ Dβ for α ≤ β. There-
fore, the same upper bound of Corollary 1 can be used for
all values α < 1, that is |Dα| = O(|D|2). For small values
of α the bound might be crude, but nevertheless polyno-
mial. Furthermore, the algorithm will perform much better
in practice than the bound suggests (the running time de-
pends on the actual size of Dα). An empirical estimation
of the real bound for α < 1 is discussed in Section 5. Also
notice that Lemma 2 sheds some light in understanding the

structure of Dα. For example, if D is spanned by only one
set, i.e., D = P(X), then we get D1 = D, which can also
be verified by the definition of false-positive ratio. We now
combine all of the above steps and obtain the main result of
this section.

Theorem 3. Consider Aprx-Collection, as defined in
Problem 2. For a given false-positive threshold value α, we
write Cα to denote the coverage measure of approximating D
when the collection of candidate spanners allowed to be used
is the collection Dα. Then, for any α ≤ 1, we can find in
polynomial time a collection A spanned by k sets such that
Cα(A,D) ≥

�
1 − 1

e � Cα(A∗,D).

Proof. From Corollary 1, we know that the size of the
candidate collection Dα is quadratic in |D|. Using Lemma 1,
we can compute Dα in an APriori fashion, and the running
time is polynomial in |D|. Now, we use the greedy algorithm
with candidate sets restricted in B+(Dα). The overall run-
ning time is clearly polynomial. Finally, the analysis of the
greedy guarantees that the approximation ratio is at least�
1 − 1

e � .

4. THE BORDER AS INPUT
In this section we explain how one can use the greedy

algorithm in order to deal with the case that only the border
is specified as input to the problem. Our main contribution
is to show that we are able to obtain a result almost identical
to the one presented in Section 3.1—the price of specifying D
with no redundancy is only an ε loss in the approximation
factor, for any ε > 0. We start by explaining where the
difficulty lies in using the greedy algorithm of Section 3.1,
and then we describe the necessary remedy for the algorithm
to run in polynomial time.

As we already mentioned in Section 2, the size of D can
be exponentially large in the size of B+(D). The greedy al-
gorithm actually utilizes resources polynomial in |D|, since
at each step it evaluates how many new elements of D are
covered by a potential candidate set to be added in the so-
lution A. Assume now that we apply the greedy algorithm
in the case that only the border is specified as input. The
first set S1 to be added in the solution is the set in B+(D)
that covers the most sets in D. A base set on t items cov-
ers exactly 2t itemsets, therefore the first set S1 will be the
set with maximum cardinality in B+(D) (breaking ties arbi-
trarily). The second set S2 will be the one that maximizes
|S1∪S2| given S1, which can be computed using the formula
|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|.

In general, in order to find at each step of the greedy
algorithm the set in the border that covers the most un-
covered sets in D, we need to compute the size of the the
union S1 ∪ . . . ∪ Sm. Resorting to the inclusion-exclusion
formula [5], as we did for S2, is a possibility but not an ef-
ficient method, since the number of terms in the formula is
exponential in m.

The first idea for computing the size of the union S1 ∪
. . . ∪ Sm is to use a Monte Carlo sampling method: Denote
by S(m) the union S1 ∪ . . .∪Sm. To estimate |S(m)| sample
n sets uniformly at random from � U and count how many
of them belong in S(m). Let this count be x. Then the ratio
x
n

is a good estimator for the ratio |S(m)|/| � U |, and since

we know that | � U | = 2N we can estimate S(m) as x
n
· 2N .

In particular, using the Chernoff bounds we can show the
following.

Fact 1. The sampling method described above provides
and ε-approximation to |S(m)| with probability at least 1− δ,
provided that

n ≥
2N

ε2|S(m)|
log

2

δ
.

Unfortunately, the idea of uniform sampling is not good
enough. The reason is that if |S(m)| is small compared to
2N , then we need to sample many sets from � U—not to
mention that to obtain the required number of samples re-
quires knowledge of |S(m)|, which is precisely what we are
trying to compute.

Fortunately, the problem posed by uniform sampling can
be overcome by resorting to the technique of importance
sampling. Here we give a short overview of the method,
more details can be found in [12, Section 11.2.2]. Recall that

our goal is to compute to compute |S(m)| = |S1 ∪ . . . ∪ Sm|,
where each Si is a subset of � U . For simplifying the no-
tation, denote V = � U , so each Si contains elements from
the universe V . Also assume that we are given small posi-
tive numbers ε and δ. Given the above setting, the method
of importance sampling provides an ε-accurate estimate for
|S(m)| with probability at least 1− δ, provided that the fol-
lowing three conditions are satisfied.

(i) For all i, we can compute |Si|.

(ii) We can sample uniformly at random from each Si.

(iii) For all v ∈ V , we can verify efficiently if v ∈ Si.

In our case, all of the above conditions are satisfied: For
(i) and (ii) we used the fact that Si are downwards closed
sets. In particular, for (i), notice that if the base set of
Si contains t elements then |Si| = 2t. For (ii), let R be a
set that contains each element of the base items of Si with
probability 1/2. Then, it is easy to see that R is a uniform
sample from the itemsets in Si. Finally, for (iii), given an
element v ∈ V we can trivially verify if it is also an element
of Si: just check if the base set of v is a subset of the base
set of Si.

The importance sampling method considers the multiset
M (m) = S1] . . .] Sm, where the elements of M (m) are
ordered pairs of the form (v, i) corresponding to v ∈ Si. In

other words, the elements of M (m) are the elements of S(m)

appended with an index that indicates due to which Si they
appear in S(m). Notice that the size of M (m) can be trivially
computed as |M (m)| =

� m

i
|Si|.

The multiset M (m) is then divided into equivalent classes,
where each class contains all pairs (v, i) that correspond to

the same element v ∈ S(m). That is, each equivalent class
corresponds to an element of v ∈ S(m) and contains all in-
dices i for which v ∈ Si. For each equivalent class one pair
(v, i) is defined to be the canonical representation for the

class. Now |S(m)| can be approximated by generating ran-

dom elements in M (m) and estimating the fraction of those
that correspond to a canonical representation of an equiva-
lent class. The intuition is that instead of sampling from the
whole space V = � U , we sample only from the set M (m).
The problem that appeared before with the uniform sam-
pling disappears now because each element in S(m) can con-
tribute at most m elements in M (m), and therefore the ratio
|S(m)|

|M(m)|
is bounded from below by 1/m. Now by applying a

sampling result similar to the one given in Fact 1, we can

estimate the ratio |S(m)|

|M(m)|
using just m

ε2
log 2

δ
samples, i.e.,

the number of samples required is polynomial in m. After

estimating |S(m)|

|M(m)|
and since the value of |M (m)| is known

we can also estimate |S(m)|.
Now we can use the above approximation scheme as part

of the greedy algorithm. The idea is to approximate the
value of the coverage measure for each candidate solution
A by the method of importance sampling, and then select
the set that maximizes the estimated coverage. By the ap-
proximation result, the coverage C of each set is estimated
within the range [(1−ε)C, (1+ε)C], with probability at least
1 − δ. Thus, in each iteration of the greedy algorithm, we
can find a set whose coverage is at least a (1 − ε) fraction
of the largest coverage, and therefore the quality of approx-
imation of the greedy is multiplied by a factor of (1 − ε).
Notice that the greedy calls the importance-sampling ap-
proximation scheme a polynomial number of times, there-
fore, in order to obtain a high probability result we need
to set 1

δ
= Ω(poly(B+(D))). However, this setting for δ

does not create a serious overhead in the algorithm, since
the complexity of the importance-sampling approximation
scheme is only logarithmic in 1

δ
. Summarizing the above

discussion, we have shown the following.

Theorem 4. For Aprx-Border as defined in Problem 2
and for any ε > 0, we can find with high probability a k-
spanned collection A such that

C(A,D) ≥

�
1 −

1

e
− ε � C(A∗,D).

Notice that the NP-hardness of Aprx-Border can also be
established; the same reduction as in Theorem 2 can be used.

In fact, the technique described in this section can be used
as a fully polynomial randomized approximation scheme (FPRAS)
for the problem of estimating the size of a frequent itemset
collection given the border of the collection.

5. EXPERIMENTAL EVALUATION
To verify the applicability of the problem studied in this

paper, we implemented the proposed algorithms and we
tested their behavior on three different real sets of data.

The first data set, Mushroom, was obtained from the
machine learning repository of UC Irvine. A support thresh-
old of 25% was used to obtain a collection of 6624 item sets.
The number of sets in the border was 98 and the average
number of items for the border sets was 6.6. The second
set, Course, is from anonymized student/course registra-
tion data in the Department of Computer Science at the
University of Helsinki. Frequent course sets were obtained
using a support threshold of 2.2%, yielding a collection of
size 1637. The size of the border for the second data set was
268 and the average number of items per border set was 4.
Finally, our third data set, BMS, is owned by Blue Mar-
tini � and it has been made available by Ronny Kohavi [10].
The data set contains click-stream data of a small company,
and it was used at the kdd cup 2000. Applying a support
threshold of 0.1% we obtained a collection of 8192 item sets
with border size 3546 and average item size for the border
sets equal to 3. The three data sets, in the order described
above, can be characterized from “narrow” (small border

0 10 20 30 40 50
30

40

50

60

70

80

90

100

T
ot

al
 c

ov
er

ag
e

as
 %

 o
f c

ol
le

ct
io

n
si

ze

k as % of border size

Mushroom data set

a = 0.9
a = 0.7
a = 0.5
a = 0.3
a = 0.1
a = 0

Figure 2: Coverage of frequent set with using up to

k = 50 sets for Mushroom dataset.

consisting of large item sets) to “wide” (large border con-
sisting of small sets). Thus, we believe that our experiments
capture a fairly large range of typical cases.

For extracting frequent sets from the above data sets we
used implementation of frequent itemset mining algorithms
available by Bart Goethals [7].

We run the greedy algorithm with value of k up to 50,
and values of the false-positive threshold parameter α in
the range (0, 1). Notice that the value k = 50 corresponds
to about 50%, 18% and 1.4% of the border size, for the data
sets Mushroom, Course, and BMS, respectively. The results
for the data sets Mushroom, Course, and BMS are shown
in Figures 2, 3, and 4, respectively. In all cases we see that
with “few” sets we can cover a “large” part of the collection.
For instance, for the mushroom data set, only 20 out of 98
item-sets in the border can cover about 80% of the collection
without introducing any false positives, whereas if we allow
a percentage of at most .3 false positives, then 20 sets cover
90% and 30 sets cover 97% of the collection. Obviously,
increasing α corresponds to better coverage (with a single
exception(!) in the Course data set for values α = 0.7 and
α = 0.9; this is probably due to fact that the greedy is an
approximate algorithm). Also, as one can expect, the more
“narrow” the data set, the better the coverage achieved for
the same (absolute) value of k.

Next we measure the number of candidates introduced
and the size of the border of the candidates, as a function
of α. This is shown in Figures 5 and 6. As we mentioned in
Section 3.2, the quadratic upper bound used from the case
α = 1 is expected to be rather crude for smaller values of
α. In practice, the number of the candidates can be much
smaller than quadratic, e.g., for α = .3 our experiments show
that the number of candidates is at most |D|1.25. Assuming
that the candidate size |Dα| has polynomial dependency on
|D|, the exponent of the polynomial can be estimated from
the ratio log |Dα|/ log |D|, which is computed using our data
sets and plotted in Figure 5 for various values of α. From
Figure 5, a reasonable conjecture is that the true exponent

0 2 4 6 8 10 12 14 16 18
10

20

30

40

50

60

70

80

90

100

T
ot

al
 c

ov
er

ag
e

as
 %

 o
f c

ol
le

ct
io

n
si

ze

k as % of border size

Course data set

a = 0.9
a = 0.7
a = 0.5
a = 0.3
a = 0.1
a = 0

Figure 3: Coverage of frequent set with using up to

k = 50 sets for Course dataset.

is 1 + α. Also one can see that less candidates are gener-
ated for the more “narrow” data sets. Finally, in Figure 6,
we show a similar kind of dependency between the border
size of the candidate collection and the border size of the
input collection, that is, the ratio log |B+(Dα)|/ log |B+(D)|
is plotted as a function of α. In this case, we see that the
“narrowness” of the data set does not influence the exponent
of growth as much.

The results indicate that using as few as 20–50 sets in
the approximation gives often quite a good approximation
of the original collection. This implies that there is hope to
obtain good succinct representations of large 0-1 datasets.

6. RELATED WORK
Related to our paper in the respect of attempting to re-

duce the size of the output of frequent item-set patterns is
the work of Han et al. [8] on mining top-k frequent closed
patterns, as well as work on closed frequent item-sets and
condensed frequent item sets, see for example, Pei et al. [14],
Pasquier et al. [13], and Calders and Goethals [3]. In [8] the
goal is to find the k most frequent sets containing at least
min l items. This goal, however, is different from our set-
ting where we ask for the k sets that best approximate the
frequent item-set collection in the sense of set coverage. The
work on frequent closed item sets attempts to compress the
collection of frequent sets in a lossless manner, while for the
condensed frequent item sets the idea is to be able to reduce
the output size by allowing a small error on the support of
the frequent item sets.

7. CONCLUDING REMARKS
We have considered the problem of approximating a col-

lection of frequent sets. We showed that if the whole col-
lection of frequent sets or its border are given as input, the
best collection of sets spanned by k sets can be approxi-
mated to within

�
1 − 1

e � . We also showed that the same
results hold when the sets used to span the collection are

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

T
ot

al
 c

ov
er

ag
e

as
 %

 o
f c

ol
le

ct
io

n
si

ze

k as % of border size

BMS data set

a = 0.9
a = 0.7
a = 0.5
a = 0.3
a = 0.1
a = 0

Figure 4: Coverage of frequent set with using up to

k = 50 sets for BMS dataset.

from the collections Dα. The results used the greedy ap-
proximation algorithm, importance sampling, and a lemma
bounding the size of Dα. The results can also be generalized
to any setting of frequent pattern discovery, provided some
mild computability conditions hold. The empirical results
show that the methods work well in practice.

Several open problems remain. First of all, the properties
of different measures of approximation merit further study.
The measure we use counts the number of positive exam-
ples covered, and the negative examples are bounded by
the choice of the collection D′. Another measure of ap-
proximation quality would simply be the number of positive
examples covered minus the number of negative examples
covered. It turns out, however, that in this case the greedy
algorithm performs arbitrarily bad.

Along the lines of using more elaborate measures is the
idea of taking into account the support of the itemsets in the
covered area, as well as the support of the false positives.
One conceptual difficulty is how exactly to integrate the
support information. In our current formulation we count
the number of itemsets covered by a collection of spanners,
however, extending this formulation to simply adding the
supports of the itemsets is perhaps less intuitive.

The case when the input is the original database is per-
haps the most interesting open algorithmic question. This
case presents significant difficulties. First, computing the
border in time polynomial to its size is a main open prob-
lem. Furthermore, the size of the border can be exponential
in the size of the database, and therefore one cannot afford
looking at the whole search space—some kind of sampling
method needs to be applied. One can try to form an ap-
proximation of the border of the collection of frequent sets
by random walks on the subset lattice. However, for such a
“random walk” sampling method we were able to construct
“bad” cases, i.e., cases in which the probability of finding
any set that covers a not so small fraction of what the best
set covers is not sufficiently large. Notice, however, that
given the transactional database one can always compute

0.1 0.3 0.5 0.7 0.9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E
xp

on
en

t o
f g

ro
w

th

False−positive threshold (a)

Candidates

BMS data set
Course data set
Mushroom data set

Figure 5: Size of the candidate collection.

the border of D using one of the many algorithms in the
data-mining literature and then apply our technique for the
Border case. We expect this method to work quite well in
practice.

Finally, from the practical point of view, user interface
techniques that use approximation of frequent set collections
might be interesting.

8. ACKNOWLEDGMENTS
We would like to thank Floris Geerts, Bart Goethals,

Taneli Mielikäinen, and Jouni Seppänen for many useful
comments.

9. REFERENCES
[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami.

Mining associations between sets of items in large
databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 207–216, 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining
sequential patterns. In Proceedings of the IEEE
International Conference on Data Engineering, pages
3–14, 1995.

[3] Toon Calders and Bart Goethals. Mining all
non-derivable frequent itemsets. In Proceedings of the
European Conference on Principles of Data Mining
and Knowledge Discovery, pages 74–85, 2002.

[4] Min Fang, Narayanan Shivakumar, Hector
Garcia-Molina, Rajeev Motwani, and Jeffrey D.
Ullman. Computing iceberg queries efficiently. In
Proceedings of the 24th International Conference on
Very Large Data Bases, pages 299–310, New York
City, USA, 1998.

[5] William Feller. An introduction to probability theory
and its applications. John Wiley & Sons, 1968.

[6] M.R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

0.1 0.3 0.5 0.7 0.9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

E
xp

on
en

t o
f g

ro
w

th

False−positive threshold (a)

Border of candidates

Mushroom data set
BMS data set
Course data set

Figure 6: Size of the border of candidate collection.

[7] Bart Goethals. Frequent itemset mining
implementations.
http://www.cs.helsinki.fi/u/goethals/software/.

[8] Jiawei Han, Jianyong Wang, Ying Lu, and Petre
Tzvetkov. Mining top-k frequent closed patterns
without minimum support. In Proceedings of the IEEE
International Conference on Data Mining, pages
211–218, 2002.

[9] Dorit Hochbaum, editor. Approximation algorithms for
NP-hard problems. PWS Publishing Company, 1997.

[10] Ron Kohavi, Carla Brodley, Brian Frasca, Llew
Mason, and Zijian Zheng. KDD-Cup 2000 Organizers’
Report: Peeling the Onion. SIGKDD Explorations,
2(2):86–98, 2000.
http://www.ecn.purdue.edu/KDDCUP/.

[11] Heikki Mannila, Hannu Toivonen, and Inkeri
Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery,
1(3):259–289, 1997.

[12] Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithms. Cambridge University Press,
1995.

[13] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and
Lotfi Lakhal. Discovering frequent closed itemsets for
association rules. In 7th International Conference on
Database Theory, pages 398–416, 1999.

[14] Jian Pei, Guozhu Dong, Wei Zou, and Jiawei Han. On
computing condensed frequent pattern bases. In
Proceedings of the IEEE International Conference on
Data Mining, 2002.

