
EVENT DISSEMINATION SERVICE FOR
PERVASIVE COMPUTING

Sasu Tarkoma1

Abstract

Event-based computing is a generic enabler for the next generation mobile services
and applications that need to meet user requirements irrespective of time and location.
The event paradigm and publish/subscribe systems allow clients to asynchronously
receive information that matches their interests. We outline an event architecture for
mobile computing that addresses two key requirements: terminal mobility and user
mobility. The system consists of access servers, event channels and a mechanism for
locating event channels. The architecture uses filter covering and merging for
supporting high accuracy in event delivery, reducing communication cost, and
improving event processing on terminals and servers. Experimental results based on
the merging system are also examined.

1. Introduction

Pervasive computing creates new possibilities for applications and services; however,
it also presents new requirements for software that need to be taken into account in
applications and in the service infrastructure. In order to support the development and
deployment of intelligent applications a number of fundamental enabling middleware
services are needed [4]. Two important services are event monitoring and event
notification, which are vital for supporting adaptation in applications. Event
monitoring and notification are used to realize a number of pervasive applications,
such as smart rooms, sensor networks, presence applications, and device tracking and
management.

Most research on event systems has focused on event dissemination in the fixed-
network, where clients are usually stationary and have reliable, low-latency, and high
bandwidth communication links. Recently, mobility and wireless communication
have been an active topic in many research projects working with event systems, such
as Siena [1], JEcho [2], and Rebeca [6]. These systems have focused on fixed-network
infrastructure supporting mobile entities. Ad hoc environments are an emerging
research area.

Pervasive computing creates new requirements for event systems, such as mobility
support, context-awareness, interoperability, and support for heterogeneous devices.
The proposed event framework addresses these issues by providing a Web Services-
based fixed-network event routing infrastructure that supports user and terminal
mobility. User mobility occurs when a user becomes disconnected or changes the

1 Helsinki Institute for Information Technology, sasu.tarkoma@hiit.fi

device. Terminal mobility occurs when a terminal moves to a new location and
connects to a new access point. Mobility transparency is a key requirement for the
system, and the middleware system should hide the complexity of subscription
management due to mobility. The hypothesis is that efficient mobility support may be
provided using an explicit-join rendezvous scheme [5]. The proposed scheme uses
event channels as meeting points in the server cloud. In addition, covering relations
and filter merging are central in minimizing the size of routing tables at the event
routers or servers.

The proposed event framework differs from existing work in several ways. The
handover protocol uses subscription covering to prevent unnecessary update messages.
The filtering system is based on disjunctive attribute filters, which are more
expressive than single predicate or conjunctive attribute filters. Features such as
client-side filtering and sessions are not supported in many systems. Client-side
filtering is important for pervasive environments in order to prevent unnecessary
signaling over wireless networks. The system groups client subscriptions into sessions,
which are manageable units and may be shared between applications.

Features such as mobility support and merging are not visible to pervasive
applications, but they are used in making the system more efficient by delivering
information where it is needed and doing it using the highest possible precision. API
features such as support for client-side filtering, and session sharing are interesting for
pervasive applications. For example: smart sensors may reduce unnecessary network
signaling by retrieving or receiving merged sets of filters and sending only matching
events to the network.

The rest of the paper is organized as follows. In Section 2 we present the system
architecture. In Section 3 we examine filter merging and in Section 4 we present the
current status and future work.

2. System Architecture

The architecture is based on the notion of a domain of event servers that provide the
event service for a number of wireless and mobile clients and for other entities that
use events. The architectural components of the system are:

• event channels (EC), which are rendezvous points for subscribers and
publishers,

• resolution servers (RS), which are responsible for the event channels,

• sessions that consist of zero or more subscriptions and buffered notifications,

• access servers (AS), which maintain connections with client systems, and

• event domains are collections of access and resolution servers.

The architecture aims to meet the requirements of mobile users by supporting
bounded delivery times and disconnected operation. User mobility is supported by the
session concept that stores undelivered notifications at access servers. A handover
protocol is used to transfer sessions between access servers, which facilitates client

mobility and may also be used in load balancing of sessions. Access servers associate
notifications with client subscriptions so that client systems do not necessarily have to
filter incoming notifications. This is especially useful for low-end client systems, such
as mobile phones and lightweight PDAs. Resolution servers are responsible for event
channels that contain a more generic set of filters, and the access servers maintain the
full set of filters. Server-to-server communication may take an advantage of IP-
multicast, but if it is not available the application level multicast is realized using
point-to-point messaging.

The motivation for the work stems from the high cost of mobility in a hop-by-hop
routed event infrastructure. The cost for mobility support in terms of exchanged
messages is high, because the source and target servers need to synchronize and
update the event routing topology, which may be arbitrary [5]. When non-covered or
merged subscriptions are propagated servers can no longer identify the source server
of a subscription, because this information is lost in the covering or merging process,
and servers need to use flooding to find the route to the source server [6].

The system supports two notification models: ordered delivery with logging, and
decentralized delivery with causal ordering. In ordered delivery events are routed
through the event channel, which provides total ordering of events within an event
domain and event history and logging features. In decentralized delivery the event
channel is used to synchronize the subscription status of the access servers and they
forward events to other access servers. Within a single event domain, filtering is done
in three phases: first on client systems, which is not mandatory, then at the resolution
servers (event channels) or access servers (decentralized delivery), and in the last
phase on the destination access servers.

The decentralized notification mechanism does not rely on a centralized dispatcher,
which makes it less prone to problems related with scalability and network partitions.
This approach synchronizes subscriptions by using a proxy channel, which resides on
the access servers. The event channel has the merged subscriptions for the access
servers, and upon subscriptions/unsubscriptions it updates the proxy channels. The
event channel has a global high-level view on the subscriptions and advertisements in
the channel, and may further optimize and merge the set of filters. For example using
advertisement semantics subscriptions need to be sent only to those servers that have
matching advertisements. Access servers forward events to other access servers based
on the proxy channel’s routing table. The proxy channel contains the filters for other
access servers, which are needed in order to make the forwarding decision.

Event channels partition the subscription space into orthogonal or near orthogonal sets
of subscriptions. Event channels are located using a built-in directory service, which
maps event types to channels. A load balancer component is used to relocate channels
and assign channels to resolution servers. A key property of the system is that the
lookup cost for an event channel is constant or near constant. This means that
subscription management operations may be performed efficiently, and the number of
hops required by the operations is bounded both within an event domain and between
event domains. Event channels may also be connected on a higher level, for example
to form hierarchies, which may affect the publication cost of events, but this does not
affect the routing table update cost for a single channel. Access servers update event
channels only when a subscription is not already covered by an existing subscription,
in addition the event channel update protocol uses either perfect or imperfect merging.

Filter merging removes unnecessary redundancy, and reduces the routing table sizes
and processing overhead of event channels. Access servers join the event domain by
sending a subscription message to an event channel. An access server may leave the
domain by unsubscribing all subscriptions.

2.1. Federation

Federation of event domains may be accomplished by connecting event channels of
the same type in different domains. A basic assumption is that in order for an event to
be delivered to another domain an event channel corresponding to the event type must
exist in the foreign domain. There are several ways to implement communication
between event channels. The basic method is to multicast updates between all
channels. Another method is to map or hash the event channel name over a set of
backbone servers to find a rendezvous server. Each event channel of the same type in
different domains updates the merged set of subscriptions to this rendezvous server.
The server delivers this information to other channels, and therefore the channels have
the knowledge of what events should be forwarded and where. Federated resolution
servers may also calculate a shortest-distance spanning tree for event channels of the
same type. In this case the event channels would form a more traditional routed event
infrastructure with a higher cost for mobility.

2.2. Handover Procedure for Client Mobility

The mobility protocol supports both client-initiated and server-initiated handovers.
There are two variants of the protocol: handover within a domain and handover
between domains. With client-initiated terminal mobility the protocol proceeds in
both cases as follows: the target server of mobility initiates the protocol and contacts
the source server and client subscriptions are sent to the target access server. If the
target server has already subscribed a covering set of subscriptions the event channels
are not updated unless the source server has no subscribers for the relocated
subscriptions. Buffering needs to be done both at the source server and at the target
server in order to avoid false negatives. Handover between domains differs from
domain specific operation, because relevant event channels in the two domains,
source and target, may need to be updated. In the final phase of the handover the
client session (containing buffered notifications) is moved from the source to the
target server and duplicates are removed. Initial results with the handover protocol
within an event domain indicate that the handover procedure may benefit from
support for filter covering in scenarios where subscriptions are saturated and
subscribed by other clients both at the source and target access servers.

3. Filter Merging

We define a notification to be a set of 3-tuples: N = {t1,t2,..,tm}, each tuple is defined
by <name, type, value>. The set of elementary types is defined as: T = {String,
Integer, Double, Boolean, Date}. A filter is a set of attribute filters, which are 3-tuples
defined by <name, type, filter clause>. Each attribute filter must match a tuple in a
notification for the filter to match a notification. The filter clause is a constraint in the
disjunctive normal form constructed using elementary atomic predicates. Our system
supports basic comparison and matching predicates for the different types.
Notifications and filters are represented using XML.

We have developed a merging framework that uses filter covering and merging rules
for predicates to remove redundancy. The covering algorithm takes into account also
semi-structured events by supporting quantification over lists. The framework
supports perfect and imperfect merging. Both merging approaches use the same
principle for filters that have the same structure2: the conjuncts of each mergeable
attribute filter are merged either using merging rules or combined using disjunctions if
they are not covered by other conjuncts. A conjunct that is covered by another
conjunct may be removed. The algorithms have polynomial time complexity.

Imperfect merging simply fuses the set of filters that have the same structure. Perfect
merging differs from imperfect merging by a stricter mergeability condition: a filter
F1 may be merged with another filter F2 only if it has at least n-1 identical attribute
filters, where n is the number of attribute filters in F1 and F2 [3]. The disjunctive
formulas guarantee that the merging of the distinctive attribute filter can be performed.
Perfectly merged filters have a precision of one, and imperfectly merged filters have a
precision in the range [0,1].

Experimentation with the framework indicates that covering and merging may be
used to reduce the size of propagated subscriptions, matching time, and signaling
overhead. Merging performance depends on the nature of the constraints, their
distributions and the structure of filters. Figure 1 gives a summary of the initial results
for perfect and imperfect merging with simple integer, double, boolean and string
constraints generated from 100 random strings and a number range of 1000. We used
10 schemas, 200 subscriptions, and 20 replications for these results using randomly
generated subscriptions and randomly generated schemas using the uniform
distribution. Perfect merging is especially useful for filters with a few attribute filters.
Imperfect merging gives good performance even when the number of attribute filters
grows, and fuses the filters given that they have the same structure with a cost in a
number of false positives. For 200 subscriptions and 2 tuples the precision was 100%,
for 3 tuples it was 92%-99%, and for 4 tuples it was 60%-82%. The benchmark is
based on a number of predefined schemas. If the filter structure is random the
merging schemes may not be able to perform merging.

0

20000

40000

60000

80000

100000

2 3 4
Attribute filters including type

Si
ze

 (b
yt

es
)

Original size
Perfect size
Imperfect size
Original gzip stream
Perfect gzip stream
Imperfect gzip stream
Original gzip
Perfect gzip
Imperfect gzip

Figure 1. Initial results using perfect and imperfect merging using 2,3, and 4 tuples

2 This means that the names and types of attribute filters are identical, but the constraints may differ.

Results with gzip compression for both filters and filter streams are also presented in
Figure 1. The results show that gzip gives good compression ratio for both merged
and unmerged filter streams. On the other hand, filter specific gzip compression is
relatively inefficient when compared with streaming compression. The major benefit
of covering and merging is not only shorter messages, but also more compact routing
tables, and faster event matching and processing.

4. Current Status and Future Work

A prototype implementation of the proposed system has been developed using the
Java language, building on existing technologies such as SOAP and Apache Axis. We
have also developed a lightweight version of the client-side API, which features
pub/sub and session management operations for J2ME MIDP3. The implementation
has been used to create two demonstration applications: a mobile presence application
and a context-sensitive ticker for mobile phones that allows transferring the end-point
of a session to a dormant instance of the application. The presence application uses
the event system to disseminate changes in users’ presence information.

Currently, load balancing and federation support are under development. The
framework supports scalability to a number of event servers, but wide-area scalability
is an open issue. Dynamic filtering and merging in both client-server and server-
server environments seem to be promising research topics—how to balance between
the precision and size of filter sets using different algorithms. These mechanisms may
also be used in ad hoc environments on devices that have enough processing power.
The proposed event architecture is envisaged to be a supporting layer for a compound
event detection system that supports the detection of complex event sequences in time.
We also plan to compare different mobility models and load balancing techniques for
session/channel relocation using simulation and the prototype implementation.

5. References

[1] CAPORUSCIO, M., INVERARDI, P., PELLICCIONE, P, Formal Analysis of Clients Mobility in
the Siena Publish/Subscribe Middleware, Technical Report, Department of Computer Science,
University of Colorado, October 2002.

[2] CHEN, Y., SCHWAN, K., ZHOU, D., Opportunistic Channels: Mobility-Aware Event Delivery,
Middleware 2003, LNCS Vol. 2672, pp. 182-201, Springer-Verlag, 2003.

[3] MÜHL, G., Generic Constraints for Content-based Publish/Subscribe, in: C. Batini et al. (Eds.),
CooPIS 2001, LNCS 2172, pp. 211-225, Springer-Verlag, 2001.

[4] RAATIKAINEN, K., CHRISTENSEN, H., NAKAJIMA, T., Application Requirements for
Middleware for Mobile and Pervasive Systems, ACM SIGMOBILE Mobile Computing and
Communications Review, Volume 6, Issue 4 (October 2002).

[5] TARKOMA, S., KANGASHARJU, J., RAATIKAINEN, K., Client Mobility in Rendezvous-Notify,
2nd Intl. Workshop on Distributed Event-Based Systems (DEBS'03).

[6] ZEIDLER, A., FIEGE, L., Mobility Support with Rebeca, Proceedings of the 23rd International
Conference on Distributed Computing Systems (ICDCS) Workshop on Mobile Computing
Middleware.

3 Java 2 Micro Edition, Mobile Information Device Profile

