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Abstract

Methods for analysis of principal components
in discrete data have existed for some time
under various names such as grade of mem-
bership modelling, probabilistic latent se-
mantic analysis, and genotype inference with
admixture. In this paper we explore a num-
ber of extensions to the common theory, and
present some application of these methods to
some common statistical tasks. We show that
these methods can be interpreted as a dis-
crete version of ICA. We develop a hierarchi-
cal version yielding components at different
levels of detail, and additional techniques for
Gibbs sampling. We compare the algorithms
on a text prediction task using support vector
machines, and to information retrieval.

1 INTRODUCTION

Principal component analysis (PCA) latent semantic
indexing, and independent component analysis (ICA)
(Hyvärinen et al., 2001) are key methods in the sta-
tistical engineering toolbox. They have a long history,
are used in many different ways, and under different
names. They were primarily developed in the engi-
neering community where the notion of a filter is com-
mon, and maximum likelihood methods less so. They
are usually applied to measurements and real valued
data.

Relatively recently the learning community has be-
come aware of a seemingly similar approach for dis-
crete data that appears under many names: grade of
membership (Woodbury & Manton, 1982) used for in-
stance in the social sciences, demographics and medi-
cal informatics, genotype inference using admixtures
(Pritchard et al., 2000), probabilistic latent seman-
tic indexing (Hofmann, 1999) latent Dirichlet allo-
cation (Blei et al., 2003), and multiple aspect mod-

elling for document analysis (Minka & Lafferty, 2002).
These methods are equivalent, ignoring statistical
methodology and notation. Note the representation
of (Pritchard et al., 2000) is completely different, thus
one also needs to translate notations. We refer to these
methods jointly as discrete PCA.

In this paper we explore these methods in some com-
mon modes for data analysis, and explore some of the
uses and relationships. We present a number of use-
ful extensions that illustrate the versatility of these
methods. Our contribution is to provide some addi-
tional techniques and methodology to allow wider use
of these tools. For instance, with a small change, the
methods turn to be a discrete version of ICA. Hier-
archical components can also be built. The first au-
thor has developed software in C and coded for POSIX
Linux that was used in these experiments and is avail-
able under the GNU GPL license from him.

2 THE BASIC MODEL

A good introduction to these models from a number of
viewpoints is (Blei et al., 2003; Buntine, 2002). They
are directly analogous to the Gaussian model of princi-
pal component analysis (Buntine, 2002). The simplest
version consists of a linear admixture of different multi-
nomials, and can be thought of as sampling words to
make up a bag, as a representation for a document.
The notation of words, bags and documents will be
used throughout, even though other kinds of data also
apply. In standard mixture models, each document
in a collection is assigned a (hidden) topic. In this
new model, each word in each document is assigned a
(hidden) topic.

• We have a total count L of words to sample.

• We partition these L words into K top-
ics, components or aspects: c1, c2, ...cK where
∑

k=1,...,K ck = L. This is done using a hidden
proportion vector m = (m1, m2, ..., mK). The in-



tention is that, for instance, a sporting article may
have 50 general vocabulary words, 40 words rel-
evant to Germany, 50 relevant to football, and
30 relevant to people’s opinions. Thus L=170
are in the document and the topic partition is
(50,40,50,30).

• In each partition, we then sample words according
to the multinomial for the topic, component or as-
pect. This is the base model for each component.
This then yields a bag of word counts for the k-th
partition, wk,· = (wk,1, wk,2, ..., wk,J ). Here J is
the dictionary size, the size of the basic multino-
mials on words. Thus the 50 football words are
now sampled into actual dictionary entries, “for-
ward”, “kicked”, “covered” etc.

• The partitions are then combined additively,
hence the term admixture, to make a distinction
with classical mixture models. This yields the
final sample of words r = (r1, r2, ..., rJ ) by to-
talling the corresponding counts in each partition,
rj =

∑

k=1,...,K wk,j . Thus if an instance of “for-
ward” is sampled twice, as a football word and
a general vocabulary word, then we return the
count of 2 and its actual topical assignments are
lost, they are hidden data.

The full probability model is then

m ∼ Dirichlet(α) ,

c ∼ Multinomial(m, L) ,

wk,· ∼ Multinomial(Ωk,·, ck) for k = 1, . . . , K .

The hidden or latent variables here are m and w for
each document, whereas c is derived. The full likeli-
hood for a single document p(m, w |α,Ω) then sim-
plifies to:
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A combinatoric term is also present or not, depending
on whether data ordering is recorded or not (Buntine,
2002). The proportions m correspond to the hidden
components for a document. The partitioned counts
w correspond to the topic assignments given to in-
dividual words. Either w or m can be marginalized
using standard distributional methods to yield another
likelihood, however only the one of Equation (1) is a
simple product of exponential family distributions.

2.1 ALGORITHMS

Neither of the three likelihoods yield to standard EM
analysis. For instance, in Equation (1) the hidden
variables m and w are coupled. Algorithms for this

problem follow some of the usual approaches in the
community, albeit with considerable sophistication:

• Annealed maximum likelihood (Hofmann, 1999),
best viewed in terms of its clustering precursor
(Hofmann & Buhmann, 1997),

• Gibbs sampling on w, m and Ω in turn using
a full probability distribution (Pritchard et al.,
2000),

• mean field methods (Blei et al., 2003), and

• expectation propagation (EP, like so-called cavity
methods) (Minka & Lafferty, 2002).

In our experience, the mean field approach is fast but
yields badly biased estimates of m, and sometimes
poor estimates of Ω. Note its speed and the likeli-
hood of results will be considerably worse if repeated
updates of m are done in initial cycles for each up-
date of Ω, as some published implementation do. The
Gibbs method is surprisingly fast but still a factor of
2-8 times slower than mean field; it requires a sample
recording stage after burn-in, and it is difficult to com-
pare convergence criteria. Gibbs is somewhat rapidly
mixing because of the nature of the dual variables (the
Ω matrix is completely re-estimated from the counts w

in each cycle, and w from the components m). EP has
unrealistic intermediate storage requirements, storing
data per wk,j , not needed by the other methods. For K
components and a collection with T total words, stor-
age required is O(KT ) which approaches terabytes on
a standard sub-gigabyte collection. It also appears to
be troubled by the Poisson regime that dominates in
sparse word count data.

In experiments below we use Gibbs sampling. An ini-
tial burn-in period is done with O(100) cycles. There-
after, the Ω parameters are averaged in the following
O(50) cycles. Note for this ExpΩ∼p(Ω|w,m) (Ω) is aver-
aged, not the raw Ω, for an unbiased but improved es-
timate. Then if document component data is wanted,
the estimate of Ω is fixed, and a further O(50) cycles
are done to estimate m or w. When Gibbs for esti-
mating m is done in one stage for each document, it
is more efficient and more sophisticated sample infor-
mation can be recorded about m.

3 EXTENSIONS

In this paper we first point out several extensions
to this basic form that make the method an attrac-
tive model family, we believe underutilized. We note,
however, that one key aspect of the theory is under-
developed: identifiability in the statistical sense.



3.1 MULTIVARIATE DATA

Discrete PCA extends easily to a set of separate multi-
nomials: For instance, we could partition the words of
a document up into five parts: title words, nouns in
the body, verbs in the body, adjectives in the body, ad-
verbs in the body, and ignore general function words
and pronouns. Each document is then represented as
five bags of words, and an admixture is made of the 5
multinomials separately, but according to the common
component proportions m.

This multinomial usage occurs in most earlier versions
of the method, and is why the method is ideal for
genotype data, demographics, voting records, medical
informatics, etc. In the theory, the third multinomial
on the w in the theory of Section 2 is repeated for
the separate bags for a document. In implementation
this changes one normalization step on counts, thus is
simple to include.

3.2 DISCRETE INDEPENDENT

COMPONENT ANALYSIS

With a small change, discrete PCA computes inde-
pendent components. The full probability model is
modified only in the generation of the count partition
c:

λk ∼ Gamma(αk, 1) for k = 1, . . . , K ,

ck ∼ Poisson(λk) for k = 1, . . . , K ,

The full likelihood for a single document p(λ, w |α,Ω)
then simplifies to:

∏
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The components for a document have now changed
from being a probability vector m to being K indepen-
dent Gamma variables λk. This is different from ICA
however, in that these independent components are
not a linear invertible transformation of the data but
a lossy summary. In practice this is irrelevant. The en-
gineering practice of ICA commonly uses derived data
from a PCA of some original data, i.e., itself a sum-
mary. For instance, when applied to documents, word
counts are first turned into TF-IDF scores, then sum-
marized using PCA, and then ICA is performed. There
is currently no version for discrete data for ICA1.

Independent Gamma variables can always be normal-

1Personal communication from A. Hyvärinen.

ized to form a Dirichlet. This model is equivalent to:

λ ∼ Gamma

(

∑

k

αk, 1

)

,

L ∼ Poisson(λ) ,

m ∼ Dirichlet(α) ,

c ∼ Multinomial(m, L) ,

Thus we see that discrete PCA, by also sampling the
total count L, can be interpreted as a discrete version
of ICA. In implementation this requires some indepen-
dent processing of the total counts but is otherwise
identical. The resulting counts can also be rounded to
produce nice data for indexing in a standard informa-
tion retrieval engine.

3.3 ESTIMATING THE “RIGHT”

NUMBER OF COMPONENTS K

We have developed a simple scheme using importance
sampling in Gibbs to estimate the evidence term for
a model. If the document data for the i-th document
is ri, and there are I documents, this evidence term
is defined as p(r1, . . . , rI | discrete PCA, K) and is tra-
ditionally the hardest part of Bayesian inference (note
that Gibbs sampling is implicitly Bayesian). We would
like to find the value of K with the highest evidence.
In popular terms, this could be used to find the “right”
number of components, though in practice such a thing
may not exist.

Pritchard et al. previously proposed an ad hoc ap-
proach to address this problem, and we need to note
some practicalities about Gibbs sampling in such mod-
els (Pritchard et al., 2000). Because the model is sym-
metric in the K components, and no symmetry break-
ing is done, in principle the results should be uniform
as sampling cycles through all K! ways in which one
model could appear. Thus if Gibbs sampling worked
perfectly in this application, the results would be use-
less without symmetry breaking. In practice, however,
we converge to a single local optimum and Gibbs sam-
pling explores the vicinity of this region, performing
local averaging.

First, consider the theory of importance sampling ap-
plied to estimating the evidence for a model with pa-
rameters and hidden data θ, and observed data x. We
wish to estimate

∫

θ
p(x|θ)p(θ)d θ. Using some sam-

pling method we generate samples θi, θ2, . . . , θN ac-
cording to the posterior distribution q(θ) ∝ p(x|θ)p(θ).
In importance sampling, the expected value of u() is
estimated using

Expθ∼p(θ)(u(θ)) =

∑

n u(θn)p(θn)/q(θn)
∑

n p(θn)/q(θn)



The lower normalizing term is used because we only
have the proportionality for q(), not the normalizer.
Applying this to evidence estimation, one gets the ap-
proximation

p(x) ≈
N

∑

n 1/p(x|θn)
.

Moreover, variational arguments show this is the im-
portance sampler for evidence that minimizes estima-
tion variance. Better sampled estimates for evidence
cannot be found! Now Gibbs can be used instead here
since it too computes averages. In our case, adding in
the symmetric factor, this becomes

p(r1, . . . , rI | discrete PCA, K) ≈

1

K!

N
∑

n 1/p(r1, . . . , rI |Ωn, K)

which is a byproduct of the sampling anyway. Thus, in
as far as we know that Gibbs sampling is not properly
mixing (or by symmetry our results would be useless
anyway) and thus is just computing a local estimate,
this is also computing a local estimate of evidence.

3.4 HIERARCHICAL COMPONENTS

The hierarchies or dendrograms generated by standard
agglomerative clustering algorithms are frequently
printed in applied science journals. It should be clear
from the independence properties in Section 3.2 that
the components in discrete PCA by design strongly
resist any form of hierarchical ordering. Moreover,
because the dimension of the underlying component
multinomial J (or dictionary size) can be compara-
ble to the sample size, hierarchical sampling of the
multinomial parameters Ωk,· is statistically impracti-
cal. But hierarchical ordering is important if a human
wishes to interpret results by inspection the typical
content of each component.

Hierarchies in discrete PCA can be designed in by forc-
ing a hierarchical correlation on the proportion vec-
tor m. A simple example is as follows: We have a
root component. All documents share a sizeable pro-
portion of this, perhaps 5-10% rather than 100/K%
proportion each component usually gets on average.
The root component then record statistics about stop
words and such. In newspaper content this records
things like days of the week, quoting verbs like “said”,
etc. The components below it them divvy up the re-
maining content. The general hierarchy only forces one
kind of constraint on the proportions m: if a child’s
proportion is large, then its parent’s proportion is also
going to be large. Children are constrained to corre-
late with their parents. Thus if the parent node were
“general sports” and the children “soccer,” “cricket,”

“baseball,” etc., then the occurrence of a large number
of soccer words in a document means, with high prob-
ability, there will be a higher than normal proportion
of general sports words in the document as well. This
is done by enforcing correlations between m according
to their position in the hierarchy.

The basic model then is changed only in the way m is
sampled. Represent the components 1, ..., K as a tree,
where each index k has its parents, children, ances-
tors, etc. Note a component k in this tree can be an
internal node or a leaf, but every node has its associ-
ated probability mk. A generating model for the tree
is based on parameters n that govern the path taken
from each node, and parameters q that govern when
to stop in the tree, since an internal node also yields a
valid index. The probability mapping is

mk = qknk

∏

l∈ancestors(k)

nl(1 − ql)

where qk is the probability that one will remain at
node k and not descend to its children, and nl is the
probability that child l will be chosen. Note qk = 1
for each leaf node k, and for each parent node k,
∑

l∈children(k) nl = 1. The probabilities qk and nk form
a dual representation for mk and the mapping is in-
vertible.

To present the hierarchical version of discrete PCA
then, we just need to give the sampling scheme for
these qk and nk. Then m is computed and the rest of
the model proceeds as before. For each k that is not a
leaf, and its children given by l1, l2, ..., lBk

we have

qk ∼ Beta(α1,k, α2,k) ,

(nl1 , nl2 , ..., nlBk
) ∼ Dirichlet(βk) .

By the well known compositional property of Dirich-
lets, if the parameters are set in a particular way (the
sum of βk equals α2,k), this flattens out into one big
K dimensional Dirichlet, which of course defeats the
whole purpose! Thus we carefully set the parameters
to avoid this. We use βk = (1/Bk, 1/Bk, ..., 1/Bk) to
induce the children to have quite varying proportions,
and make α1,k, α2,k something like 1, 10 for the root
node (a weak preference for 10% stop words) and 10, 60
for lower parent nodes, a stronger preference for 14%
topically shared words; the strength is essential to stop
the hierarchy flattening and making the intermediate
nodes topically coherent.

For a fixed tree structure, the Gibbs version of this
scheme just modifies the sampling of m, and thus is
straightforward to implement. The mean field version
now has dual parameters giving a Beta and Dirichlet
approximation to the posteriors of qk and nk respec-
tively. Using the mean field formulation of Ghahra-
mani and Beal (Ghahramani & Beal, 2000) presented



for discrete PCA in (Buntine, 2002), the development
is tedious but straightforward, and has the same form
as its non-hierarchical version.

3.5 INFERENCE ON NEW DATA

A typical use of the model requires performing infer-
ence related to a particular document. In our ex-
perience, the posterior Dirichlet approximations for
m produced by mean field can be extreme, and not
good for inference, also discussed in (Minka & Lafferty,
2002). Minka et al. recommend using an approxima-
tion due to Cowell, Dawid and Sebastiani (1996) for
this task. This does sampling to estimate both the
means and variances of the proportions m for a docu-
ment, and then sets a Dirichlet to agree in mean, and
to agree in average standard deviation. This approach
can thus be used for data summarization of samples.
Minka et al. also recommend importance sampling be
used to perform inference about quantities related to a
document, using an approximate Dirichlet as the im-
portance distribution. For larger component counts
K > 20, we have found this method fails: importance
sampling is notoriously poor in large dimensions when
the sampling distribution is not close to optimal.

We avoid this problem by using a minimum variance
importance sampler. The trick described in Section
3.2 can be used here as well. Suppose, for instance,
we wished to estimate how well a snippet of text, a
query, matches a document. Our document’s topics
are summarised by the hidden variables m. If the
new query is represented by x, then p(x|m,Ω, K) is
the matching quantity we would like ideally. Fixing
the model parameters Ω for now, our best estimate to
this matching quality measure is given by the posterior
expectation

Exp
m∼p(m|r,Ω,K) (p(x|m,Ω, K))

This can be estimated in few samples by drawing
Gibbs samples mn of the hidden proportions from the
modified posterior p(m|r, x,Ω, K) (note the query x

now occurs on the right hand side here as well as the
original document data r) and computing

N
∑

n 1/p(x|mn,Ω, K)
.

As before, this sampling yields minimum variance es-
timates for any importance sampler.

Note using this method, we have observed that the ap-
proximate Dirichlet posteriors estimated by the mean
field method can have a posterior variance over 100
times smaller than the real posterior variance–in use
we have observed this translates to very poor perfor-
mance.

4 EXPERIMENT WITH A

HIERARCHY

An analysis was made of 34,449 documents crawled
from .GOV containing the word “Iraq”. About 50
common stop-words were removed, and only the top
76,525 words were retained, yielding 10,738,635 words
in total. A hierarchy was built with branching factor 7
and depth 3. Gibbs using a burn-in of 100 cycles and
final recording (of Ω) of 100 cycles takes 4 hours and
created 57 components. This is four times an equiva-
lent flat computation using mean field. Note we might
have settled on about

When inspecting the model, the word multinomials
for components below a node can be averaged to give
a representation of the k-th node

mk

mk +
∑

l∈children(k) ml

Ωk,· +

∑

l∈children(k)

ml

mk +
∑

l∈children(k) ml

Ωl,·

The resultant word probabilities were inspected by
viewing the dominant words. Some of the components

Table 1: Sample Nodes in a Hierarchy

NODE DESCRIPTION
root General frequencies of words in collection
node 1 Accounting and Finance + Imagery
node 2 Opinions, Presidential and otherwise on in-

ternational issues
node 3 US government issues
node 4 Department of State briefings and reports
node 5 Issues of concern to voters
node 6 Congressional and Embassy home pages
node 7 Government funding and funded programs.
child of 1 NASA,NOAA,USGS, etc.
child of 1 Funding, loan, grant issues in Government

supported business
child of 2 Voice of America (radio station)
child of 2 Asian-Pacific issues
child of 6 Bibliographic data
child of 7 Funding and resources regulations (i.e., w.r.t

”reconstruction”)

are described in Table 1. Nodes 1-7 lie directly be-
low the root node, and some additional children are
given as well. Inspection shows about 70% coherency
between an intermediate node and its children. Note
that while general coherency to the hierarchy was ob-
tained, node 1 mixes two separate concepts.



5 EXPERIMENTS ON

INDEPENDENCE OF

COMPONENTS

To explore ICA comparison described in Section 2.2,
we applied discrete PCA in both its flat and hierar-
chical version. We used the original 20 Newsgroups
data2. We performed Porter stemming and eliminated
numbers (except years), and basic stop words (propo-
sitions, conjunctions, common verbs like “has”), and
then eliminated words with less than 4 occurrences or
in less than 3 documents. The result was 19,997 doc-
uments with 29,998 lexemes and 2,262,161 lexemes in
total.

Standard Gibbs was performed with K = 150, and
hierarchical Gibbs with maximum K = 200, a branch-
ing factor of 7 and a starting hierarchy of K = 57.
The hierarchy has approximately the same number
of leaves as the flat version. Experiments with K =
50, 100, 150, 200, 300 had previously determined K =
150 to be the best number of components for the flat
model using the methods of Section 3.3. The Dirichlet
prior on the J-dimensional component multinomials
(Ωk,·) was an empirical prior with means estimated via
Laplace smoothing and a prior count of 1. Words in
a component are approximately Zipf-like apriori. The
Dirichlet prior on the K component proportions m

was a uniform Dirichlet with the prior count of 1, as
was the prior in the hierarchical version for branch se-
lection. For the K = 200 hierarchical version, the final
layer of leaf nodes extended the most populous nodes
in the 57-node starting hierarchy at cycle 50. 200 cy-
cles was done for burn-in, and a following 100 cycles
for recording. The 200 component hierarchical version
took 280 minutes of a 1.5GHz AMD CPU with 500Mb
of main memory under Linux, and the 150 component
flat version took 202 minutes. By comparison, mean
field on the 150 component flat model takes 35 minutes
with a 100 cycles.

To evaluate the independence of components, we com-
pute the pairwise correlation co-efficient between the
discrete ICA components, which correspond to the
mean of the m vector times the word count for the
document L. This gives 11175 correlations for the
flat version and 19900 correlations for the hierarchi-
cal version. The resulting correlation coefficients are
given in Figure 1. “D” labels correlations for the flat
K = 150 model, “T-T” labels correlations between in-
ternal nodes of the K = 200 hierarchical model, “B-B”
between leaf nodes, and “T-B” between leaf and inter-
nal nodes. These correlation coefficients are mostly
surprisingly small, indicating to some degree indepen-
dence of components has been achieved. An inves-

2See http://www.ai.mit.edu/∼jrennie/20Newsgroups/.

D B−B T−B T−T

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 1: Box Plots for the Two Models

tigation into the interactions here using methods of
(Jakulin & Bratko, 2003) revealed that in the hierar-
chical model much of the interaction is up and down
the hierarchy. Children and parents can have some
dependence.

6 CLASSIFICATION

EXPERIMENTS

We tested the use of discrete PCA in its role as a
feature cnstruction tool, a common use for PCA and
ICA, and as a classification tool. For this, we used
the 20 newsgroups collection described previously as
well as the Reuters-21578 collection3. We employed
the SVMlight V5.0 (Joachims, 1999) classifier with de-
fault settings. For classification, we added the class as
a distinct multinomial (cf. Section 3.1) for the train-
ing data and left it empty for the test data, and then
predicted the class value using the method of Sec-
tion 3.5. Note that for performance and accuracy,
SVM is the clear winner: as the state of the art op-
timized discrimination-based system this is to be ex-
pected. It is interesting to see how discrete PCA com-
pares.

Each component can be seen as generating a number of
words in each document. This number of component-
generated words plays the same role in classification
as does the number of lexemes in the document in or-
dinary classification. In both cases, we employed the
TF-IDF transformed word and component-generated

3The Reuters-21578, Distribution 1.0 test collection is
available from David D. Lewis’ professional home page,
currently: http://www.research.att.com/∼lewis



word counts as feature values. Since SVM works with
sparse data matrices, we assumed that a component
is not present in a document if the number of words
that would a component have generated is less than
0.01. The components alone do not yield a classifi-
cation performance that would be competitive with
SVM, as the label has no distinguished role in the fit-
ting. However, we may add these component-words in
the default bag of words, hoping that the conjunctions
of words inherent to each component will help improve
the classification performance.

For the Reuters collection, we used the ModApte split.
For each of the 6 most frequent categories, we per-
formed binary classification. Further results are dis-
closed in Table 24. No major change was observed by
adding 50 components to the original set of words. By
performing classification on components alone, the re-
sults were inferior, even with a large number of compo-
nents. In fact, with 300 components, the results were
worse than with 200 components, probably because
of overfitting. Therefore, regardless of the number of
components, the SVM performance with words cannot
be reproduced by component-generated words in this
collection.

Table 2: SVM Classification Results

SVM SVM+dPCA
CAT ACC. P/R ACC. P/R
earn 98.58 98.5/97.1 98.45 98.2/97.1
acq 95.54 97.2/81.9 95.60 97.2/82.2
moneyfx 96.79 79.2/55.3 96.73 77.5/55.9
grain 98.94 94.5/81.2 98.70 95.7/74.5
crude 97.91 89.0/72.5 97.82 88.7/70.9
trade 98.24 79.2/68.1 98.36 81.0/69.8

dPCA (50 comp.) dPCA (200 comp.)
CAT ACC. P/R ACC. P/R
earn 96.94 96.1/94.6 97.06 96.3/94.8
acq 92.63 93.6/71.1 92.33 95.3/68.2
moneyfx 95.48 67.0/33.0 96.61 76.0/54.7
grain 96.21 67.1/31.5 97.18 77.5/53.0
crude 96.57 81.1/52.4 96.79 86.1/52.4
trade 97.82 81.4/49.1 97.91 78.3/56.0

Classifying newsgroup articles into 20 categories
proved more successful. We employed two repli-
cations of 5-fold cross validation, and we achieved
the classification accuracy of 90.7% with 50 addi-
tional dPCA components, and 87.1% with SVM alone.
Comparing the two confusion matrices, the most fre-
quent mistakes caused by SVM+dPCA beyond those
of SVM alone were predicting talk.politics.misc as
sci.crypt (26 errors) and talk.religion.misc predicted

4The numbers are percentages, and ‘P/R’ indicates pre-
cision/recall.

as sci.electron (25 errors). On the other hand,
the components helped better identify alt.atheism
and talk.politics.misc, which were misclassified as
talk.religion.misc (259 fewer errors) earlier. Also,
talk.politics.misc and talk.religion.misc were not mis-
classified as talk.politics.gun (98 fewer errors). These
50 components were not very successful alone, result-
ing in 18.5% classification accuracy. By increasing the
number of components to 100 and 300, the classifica-
tion accuracy gradually increases to 25.0% and 34.3%.
Therefore, many components are needed for general-
purpose classification.

From these experiments, we can conclude that compo-
nents may help with tightly coupled categories that
require conjunctions of words (20 newsgroups), but
not with the keyword-identifiable categories (Reuters).
Judging from the ideas in (Jakulin & Bratko, 2003),
the components help in two cases: a) when the co-
appearance of two words is more informative than sum
of informativeness of individual appearance of either
word, and b) when the appearance of one word im-
plies the appearance of another word, which does not
always appear in the document.

7 INFERENCE EXPERIMENTS

We performed document retrieval using the new
Reuters Corpus5, containing over 806,791 news items
from 1996 and 1997. Documents were preprocessed by
a simple parser so that document data was presented
to discrete PCA as 4 separate bags, one for nouns,
one for verbs, one for adjectives and one for adverbs.
These resulted in 155,325 distinct lexemes, but in four
separate multinomials for a total of 92,639,516 lexemes
in the full collection. A hierarchical model was built
as before with a branching factor of 10 and 111 nodes
in total, in an overnight run (whereas, a 1111-node
hierarchy took 6 days on a dual CPU).

Queries were performed on the K = 111 model using
the method of Section 3.5 applied by re-ranking the
top 20,000 documents returned by TF-IDF. The in-
ference for this typically take 5 minutes time in total
for each query, and thus is not a realistic information
retrieval method at present. We evaluated the results
by inspection, and compared the results with state of
the art TF-IDF processing from the Lemur Toolkit ap-
plied to the same preprocessed document data. Two
queries are demonstrated here, the first extracted from
an article about the 2003 UK housing market.

Query 1: A shortage of properties across the country

is adding pressure to the housing market, and keeping

5Volume 1: English Language, 1996-08-20 to 1997-08-
19.



Table 3: Results for Query 1

Discrete PCA component matching
UK Property shortage squeezes UK housing market
UK UK housing market strongest for eight years
UK Housing shortage squeezes prices through roof
UK UK housing market recovery continues, survey
UK UK housing shortage drives prices higher

TF-IDF Matching as per Lemur Toolkit
USA TEXT - Excerpts of the Feb FOMC meeting min.
UK Full text of April 10 UK monetary minutes
SA Text of President Mandela’s speech to parliament
UK Full text of October 30 UK monetary minutes
USA Fed says economy growing steadily, prices muted

Table 4: Results for Query 2

Discrete PCA component matching
DE Soccer-German wonder-winger Libuda dies at 52
DE Soccer showcase-contrasting priorities for two

Borussias
DE Soccer-fans pray for Borussia triumph
DE Soccer-Schalke fans party all night
DE Soccer-Sammer tipped to win footballer of the

year

TF-IDF Matching as per Lemur Toolkit
UK Yearend-Football home, but Estonia missing
UK Yearend-Football home, but Estonia missing
DE Soccer-Dortmund, Schalke bring cheer to

troubled Ruhr
DE Soccer-Eintracht Frankfurt battling to avoid

obscurity
CZ Soccer-Czech fans harken back to old days as

pay-TV

prices on the rise, a new report says.

Query 2: football fans in Germany.

In Tables 3 and 4, five discrete PCA results are first,
then five TF-IDF results. This inference method is
in the spirit of language modelling for information re-
trieval (Croft & Lafferty, 2003) and it is clear that
topical content is being retrieved. Note that articles
retrieved using the mean field approximation to per-
form inference were poor, as expected from Section 3.5.

Generally some results were impressive and some
patchy but not much worse. We speculate that in
queries of a more general nature, better results seem
to be returned, but in others TF-IDF is clearly prefer-
able due to its speed. Statistical inference must fail in
specific queries where keywords are insufficiently dense
to allow a statistical trace to be recovered.

8 CONCLUSION

We have argued that discrete PCA is a discrete version
of ICA. We have shown it performs as a data reduction

tool, though somewhat slow, and that it can be used
for inference as well, for instance for information re-
trieval. A hierarchical version developed retains many
of the same properties but develops components with
a hierarchical coherence, better for human interpreta-
tion. This required some theoretical development, as
discussed, including optimal sampling for choosing the
right number of components, and optimal sampling for
inference. The software demonstrated here is available
under the GNU GPL license from the first author.
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