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Abstract

Bayesian network models are widely used for dis-
criminative prediction tasks such as classification.
Usually their parameters are determined using ‘un-
supervised’ methods such as maximization of the
joint likelihood. The reason is often that it is un-
clear how to find the parameters maximizing the
conditional (supervised) likelihood. We show how
the discriminative learning problem can be solved
efficiently for a large class of Bayesian network
models, including the Naive Bayes (NB) and tree-
augmented Naive Bayes (TAN) models. We do this
by showing that under a certain general condition
on the network structure, the discriminative learn-
ing problem is exactly equivalent to logistic regres-
sion with unconstrained convex parameter spaces.
Hitherto this was known only for Naive Bayes mod-
els. Since logistic regression models have a con-
cave log-likelihood surface, the global maximum
can be easily found by local optimization methods.

1 Introduction
In recent years it has been recognized that for discriminative
prediction tasks such as classification, we should use a ‘su-
pervised’ learning algorithm such as conditional likelihood
maximization [Friedman et al., 1997; Ng and Jordan, 2001;
Kontkanen et al., 2001; Greiner and Zhou, 2002]. Neverthe-
less, for Bayesian network models the parameters are cus-
tomarily determined using ordinary methods such as maxi-
mization of the joint (unsupervised) likelihood. One of the
main reasons for this discrepancy is the difficulty in finding
the global maximum of the conditional likelihood. In this pa-
per, we show that this problem can be solved, as long as the
underlying Bayesian network meets a particular additional
condition, which is satisfied for many existing Bayesian-
network based models including Naive Bayes (NB), TAN
(tree-augmented NB) and ‘diagnostic’ models [Kontkanen et
al., 2001].

We consider domains of discrete-valued random variables.
We find the maximum conditional likelihood parameters by
logarithmic reparametrization. In this way, each conditional
Bayesian network model is mapped to a logistic regression

model, for which the likelihood surface is known to be con-
cave. However, in some cases the parameters of this logis-
tic regression model are not allowed to vary freely. In other
words, the Bayesian network model corresponds to a subset
of a logistic regression model rather than the full model.

Our main result (Thm. 3 below) provides a general condi-
tion on the network structure under which, as we prove, the
Bayesian network model is mapped to a full logistic regres-
sion model with freely varying parameters. Therefore, in the
new parametrization the conditional log-likelihood becomes
a concave function of the parameters that under our condi-
tion are allowed to vary freely over the convex set R

k. Now
we can find the global maximum in the conditional likelihood
surface by simple local optimization techniques such as hill
climbing.

The result still leaves open the possibility that there are no
network structures for which the conditional likelihood sur-
face has local, non-global maxima. This would make our con-
dition superfluous. Our second result (Thm. 4 below) shows
that this is not the case: there are very simple network struc-
tures that do not satisfy our condition, and for which the con-
ditional likelihood can exhibit local, non-global maxima.

Viewing Bayesian network (BN) models as subsets of lo-
gistic regression models is not new; it was done earlier in
papers such as [Heckerman and Meek, 1997a; Ng and Jor-
dan, 2001; Greiner and Zhou, 2002]. Also, the concavity
of the log-likelihood surface for logistic regression is known.
Our main contribution is to supply the condition under which
Bayesian network models correspond to logistic regression
with completely freely varying parameters. Only then can
we guarantee that there are no local maxima in the likelihood
surface. As a direct consequence of our result, we show for
the first time that the supervised likelihood of, for instance,
the tree-augmented Naive Bayes (TAN) model has no local
maxima.

This paper is organized as follows. In Section 2 we in-
troduce Bayesian networks and an alternative, so-called L-
parametrization. In Section 3 we show that this allows us
to consider Bayesian network models as logistic regression
models. Based on earlier results in logistic regression, we
conclude that in the L-parametrization the supervised log-
likelihood is a concave function. In Section 4 we present
our main results, giving conditions under which the two
parametrizations correspond to exactly the same conditional
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distributions. Conclusions are summarized in Section 5;
proofs of the main results are given in Appendix A.

2 Bayesian Networks and the L-model
We assume that the reader is familiar with the basics of the
theory of Bayesian networks, see, e.g., [Pearl, 1988].

Consider a random vector X = (X0, X1, . . . , XM ′),
where each variable Xi takes values in {1, . . . , ni}. Let B be
a Bayesian network structure over X , that factorizes P (X)
into

P (X) =

M ′

∏

i=0

P (Xi | Pai), (1)

where Pai ⊆ {X0, . . . , XM ′} is the parent set of variable Xi

in B.
We are interested in predicting some class variable Xm

for some m ∈ {0, . . . , M ′} conditioned on all Xi, i 6= m.
Without loss of generality we may assume that m = 0 (i.e.,
X0 is the class variable) and that the children of X0 in B
are {X1, . . . , XM} for some M ≤ M ′. For instance, in the
so-called Naive Bayes model we have M = M ′ and the chil-
dren of the class variable X0 are independent given the value
of X0. The Bayesian network model corresponding to B is
the set of all distributions satisfying the conditional indepen-
dencies encoded in B. It is usually parametrized by vectors
ΘB with components of the form θB

xi|pai
defined by

θBxi|pai
:= P (Xi = xi | Pai = pai), (2)

where pai is any configuration (set of values) for the par-
ents Pai of Xi. Whenever we want to emphasize that
each pai is determined by the complete data vector x =
(x0, . . . , xM ′), we write pai(x) to denote the configuration
of Pai in B given by the vector x. For a given data vec-
tor x = (x0, x1, . . . , xM ′ ), we sometimes need to consider
a modified vector where x0 is replaced by x′

0 and the other
entries remain the same. We then write pai(x

′
0, x) for the

configuration of Pai given by (x′
0, x1, . . . , xM ′ ).

We let MB be the set of conditional distributions
P (X0 | X1, . . . , XM ′ , ΘB) corresponding to distributions
P (X0, . . . , XM ′ | ΘB) satisfying the conditional indepen-
dencies encoded in B. The conditional distributions in MB

can be written as

P (x0 | x1, . . . , xM ′ , ΘB)

=
θB

x0|pa0(x)

∏M ′

i=1 θB
xi|pai(x)

∑n0

x′

0
=1 θB

x′

0
|pa0(x)

∏M ′

i=1 θB
xi|pai(x′

0
,x)

, (3)

extended to N outcomes by independence.
Given a complete data-matrix D = (x1, . . . , xN ), the con-

ditional log-likelihood, SB(D; ΘB), with parameters ΘB is
given by

SB(D; ΘB) :=

N
∑

j=1

SB(xj ; ΘB), (4)

where

SB(x; ΘB) := ln P (x0 | x1, . . . , xM ′ , ΘB). (5)

Note that in (3), and hence also in (4), all θBxi|pai
with

i > M (standing for nodes that are neither the class variable

nor any of its children) cancel out, since for these terms we
have pai(x) ≡ pai(x

′
0, x) for all x′

0. Thus the only relevant
parameters for determining the conditional likelihood are of
the form θB

xi|pai
with i ∈ {0, . . . , M}, xi ∈ {1, . . . , ni} and

pai any configuration of parents Pai. We order these param-
eters lexicographically and define Θ

B to be the set of vectors
constructed this way, with θB

xi|pai
> 0 and

∑ni

xi=1 θB
xi|pai

= 1

for all i ∈ {0, . . . , M}, xi and all values (configurations) of
pai. Note that we require all parameters to be strictly positive.

The modelMB does not contain any notion of the joint dis-
tribution: Terms such as P (Xi | Pai), where 0 < i ≤ M ′,
are undefined and neither are we interested in them. Our
task is prediction of X0 given X1, . . . , XM ′ . Heckerman
and Meek call such models Bayesian regression/classification
(BRC) models [Heckerman and Meek, 1997a; 1997b].

For an arbitrary conditional Bayesian network modelMB,
we now define the so-called L-model, another set of con-
ditional distributions P (X0 | X1, . . . , XM ′). This model,
which we denote byML, is parametrized by vectors ΘL in
some set ΘL that closely resembles Θ

B. Each differentMB

gives rise to a correspondingML, although we do not nec-
essarily have MB = ML. For each component θB

xi|pai
of

each vector ΘB ∈ Θ
B, there is a corresponding component

θL
xi|pai

of the vectors ΘL ∈ Θ
L. The components θL

xi|pai
take

values in the range (−∞,∞) rather than (0, 1). Each vector
ΘL ∈ Θ

L defines the following conditional distribution:

P (x0 | x1, . . . , xM ′ , ΘL) :=

(exp θL
x0|pa0(x))

∏M

i=1 exp θL
xi|pai(x)

∑n0

x′

0
=1(exp θL

x′

0
|pa0(x))

∏M

i=1 exp θL
xi|pai(x′

0
,x)

. (6)

The model ML is the set of conditional distributions
P (X0 | X1, . . . , XM ′ , ΘL) indexed by ΘL ∈ Θ

L, extended
to N outcomes by independence. Given a data-matrix D, let
SL(D; ΘL) be the conditional log-likelihood with parameters
ΘL, defined analogously to (4) with (6) in place of (3).

Theorem 1. MB ⊆ML.

Proof. From (3) and (6) we get that ΘL defined by setting
θL

xi|pai
= ln θBxi|pai

for all i, xi and pai, indexes the same

conditional distribution as ΘB.

In words, all the conditional distributions that can be rep-
resented by parameters ΘB ∈ Θ

B can also be represented
by parameters ΘL ∈ Θ

L. The converse of Theorem 1, i.e.,
ML ⊆ MB, is true only under some additional conditions
on the network structure, as we explain in Section 4. First we
take a closer look at the L-model.

3 The L-model Viewed as Logistic Regression
Although L-models are closely related to and in some cases
formally identical to Bayesian network models, we can also
think of them as predictors that combine the information of
the attributes using the so-called softmax rule [Heckerman
and Meek, 1997b; Ng and Jordan, 2001]. In statistics, such
models have been extensively studied under the name of lo-
gistic regression models, see, e.g. [McLachlan, 1992, p.255].
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More precisely, let X0 = {1, . . . , n0} and let Y1, . . . , Yk

be real-valued random variables. The multiple logistic re-
gression model with dependent variable X0 and covariates
Y1, . . . , Yk is defined as the set of conditional distributions

P (x0 | y1, . . . , yk) :=
exp

∑k

i=1 βx0|i yi
∑n0

x′

0
=1 exp

∑k

i=1 βx′

0
|i yi

(7)

where the βx0|i are allowed to take on all values in R. This
defines a conditional model parameterized in R

n0·k. Now, for
i ∈ {0, . . . , M}, xi ∈ {1, . . . , ni} and pai in the set of parent
configurations of Xi, let

Y(xi,pai) :=

{

1 if Xi = xi and Pai = pai

0 otherwise.
(8)

The indicator random variables Y(xi,pai) thus obtained can
be lexicographically ordered and renamed 1, . . . , k, which
shows that each L-model corresponding to a Bayesian net-
work structure B as in (6) is formally identical to the logistic
model (7) with dependent variable X0 and covariates given
by (8). So, for all network structures B, the corresponding L-
modelML is the standard multiple logistic model, where the
input variables for the logistic model are transformations of
the input variables to the L-model, the transformation being
determined by the network structure B.

It turns out that the conditional log-likelihood in the L-
parametrization is a concave function of the parameters:

Theorem 2. The parameter set Θ
L is convex, and the con-

ditional log-likelihood SL(D; ΘL) is concave, though not
strictly concave.

Proof. The first part is obvious since each parameter can take
values in (−∞,∞). Concavity of SL(D; ΘL) is a direct con-
sequence of the fact that multiple logistic regression models
are exponential families; see, e.g., [McLachlan, 1992, p.260].
For an example showing that the conditional log-likelihood is
not strictly concave, see [Wettig et al., 2002].

Remark. Non-strictness of the proven concavity may pose
a technical problem in optimization. This can be avoided by
assigning a strictly concave prior on the model parameters
and then maximizing the ‘conditional posterior’ [Grünwald
et al., 2002; Wettig et al., 2002] instead of the likelihood.
One may also prune the model of weakly supported parame-
ters and/or add constraints to arrive at a strictly concave con-
ditional likelihood surface. Our experiments [Wettig et al.,
2002] suggest that for small data samples this should be done
in any case, in order to avoid over-fitting; see also Section 5.
Any constraint added should of course leave the parameter
space a convex set, e.g. a subspace of the full ΘL.

Corollary 1. There are no local, non-global, maxima in the
likelihood surface of an L-model.

The conditions under which a global maximum exists are
discussed in, e.g., [McLachlan, 1992] and references therein.
A possible solution in cases where no maximum exists is to
introduce a strictly concave prior as discusssed above.

The global conditional maximum likelihood parameters
obtained from training data can be used for prediction of

future data. In addition, as discussed in [Heckerman and
Meek, 1997a], they can be used to perform model selec-
tion among several competing model structures using, e.g.,
the BIC or (approximate) MDL criteria. In [Heckerman and
Meek, 1997a] it is stated that for general conditional Bayesian
network modelsMB, “although it may be difficult to deter-
mine a global maximum, gradient-based methods [...] can be
used to locate local maxima”. Theorem 2 shows that if the
network structure B is such that the two models are equiva-
lent,MB = ML, we can find even the global maximum of
the conditional likelihood by reparametrizingMB to the L-
model, and using some local optimization method. Thus, the
question under which condition MB = ML becomes cru-
cial. It is this question we address in the next section.

Remark. Because the log-transformation is continuous, it
follows (with some calculus) that, if MB = ML, then all
maxima of the (concave) conditional likelihood in the L-
parameterization are global (and connected) maxima also in
the original parametrization. Nevertheless, the likelihood sur-
face as a function of ΘB ∈ Θ

B has some unpleasant proper-
ties (see [Wettig et al., 2002]): it is not concave in general
and, worse, it can have ‘wrinkles’: by these we mean con-
vex subsets Θ

B
0

of Θ
B, such that, under the constraint that

ΘB ∈ Θ
B
0 , the likelihood surface does exhibit local, non-

global maxima. This suggests that it is computationally pre-
ferrable to optimize over Θ

L rather than Θ
B. Empirical evi-

dence for this is reported in [Greiner and Zhou, 2002].

4 Main Result
By setting θL

xi|pai
= ln θB

xi|pai
, it follows that each distribu-

tion inMB is also in ML (Thm. 1). This suggests that, by
doing the reverse transformation

θBxi|pai
= exp θL

xi|pai
, (9)

we could also show that distributions in ML are also in
MB. However, Θ

L contains distributions that violate the
‘sum-up-to-one constraint’, i.e., for some ΘL ∈ Θ

L we have
∑ni

xi=1 exp θL
xi|pai

6= 1 for some i ∈ {0, . . . , M ′} and pai.

Then the corresponding ΘB is not in Θ
B. But, since the L-

parameterization is redundant (many different ΘL index the
same conditional distribution P (· | ·) ∈ ML), it may still
be the case that the distribution P (· | ·, ΘL) indexed by ΘL

is in MB. Indeed, it turns out that for some network struc-
tures B, the correspondingML is such that each distribution
inML can be expressed by a parameter vector ΘL such that
∑ni

xi=1 exp θL
xi|pai

= 1 for all i ∈ {0, . . . , M ′} and pai. In

that case, by (9), we do haveMB =ML. Our main result is
that this is the case if B satisfies the following condition:

Condition 1. For all j ∈ {1, . . . , M}, there exists Xi ∈
Paj such that Paj ⊆ Pai ∪ {Xi}.

Remark. Condition 1 implies that the class X0 must be a
‘moral node’, i.e., it cannot have a common child with a node
it is not directly connected with. But Condition 1 demands
more than that; see Figures 1 and 2.
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Figure 1: A simple Bayesian network (the class variable is
denoted by X0) satisfying Condition 1 (left); and a network
that does not satisfy the condition (right).

X0

X1 X2 X3

X0

X1 X2 X3

Figure 2: A tree-augmented Naive Bayes (TAN) model satis-
fying Condition 1 (left); and a network that is not TAN (right).
Even though in both cases the class variable X0 is a moral
node, the network on the right does not satisfy Condition 1.

Example 1. Consider the Bayesian networks depicted in Fig-
ure 1. The leftmost network, B1, satisfies Condition 1, the
rightmost network, B2, does not. Theorem 4 shows that the
conditional likelihood surface of MB2 can have local max-
ima, implying that in this caseMB 6=ML. ♦

Examples of network structures that satisfy Condition 1 are
the Naive Bayes (NB) and the tree-augmented Naive Bayes
(TAN) models [Friedman et al., 1997]. The latter is a gen-
eralization of the former in which the children of the class
variable are allowed to form tree-structures; see Figure 2.

Proposition 1. Condition 1 is satisfied by the Naive Bayes
and the tree-augmented Naive Bayes structures.

Proof. For Naive Bayes, we have Paj ⊆ {X0} for all j ∈
{1, . . . , M}. For TAN models, all children of the class vari-
able have either one or two parents. For children with only
one parent (the class variable) we can use the same argument
as in the NB case. For any child Xj with two parents, let Xi

be the parent that is not the class variable. Because Xi is also
a child of the class variable, we have Paj ⊆ Pai∪{Xi}.

Condition 1 is also automatically satisfied if X0 only has
incoming arcs1 (‘diagnostic’ models, see [Kontkanen et al.,
2001]). For Bayesian network structuresB for which the con-
dition does not hold, we can always add some arcs to arrive
at a structure B′ for which the condition does hold (for in-
stance, add an arc from X1 to X3 in the rightmost network
in Figure 2). Therefore, MB is always a subset of a larger
modelMB′

for which the condition holds. We are now ready
to present our main result (for proof see Appendix A):

Theorem 3. If B satisfies Condition 1, thenMB =ML.

Together with Corollary 1, Theorem 3 shows that Condi-
tion 1 suffices to ensure that the conditional likelihood sur-
face ofMB has no local (non-global) maxima. Proposition 1

1It is easy to see that in that case the maximum conditional like-
lihood parameters may even be determined analytically.

now implies that, for example, the conditional likelihood sur-
face of TAN models has no local maxima. Therefore, a global
maximum can be found by local optimization techniques.

But what about the case in which Condition 1 does not
hold? Our second result, Theorem 4 (proven in Appendix A)
says that in this case, there can be local maxima:

Theorem 4. Let B2 = X1 → X2 ← X0 be the network
structure depicted in Figure 1 (right). There exist data sam-
ples such that the conditional likelihood has local, non-global
maxima overMB2 .

The theorem implies thatML 6=MB2 . Thus, Condition 1
is not superfluous. We may now ask whether our condition
is necessary for havingML =MB; that is, whetherML 6=
MB for all network structures that violate the condition. We
plan to address this intriguing open question in future work.

5 Concluding Remarks
We showed that one can effectively find the parameters max-
imizing the conditional (supervised) likelihood of NB, TAN
and many other Bayesian network models. We did this by
showing that the network structure of these models satisfies
our ‘Condition 1’, which ensures that the conditional distri-
butions corresponding to such models are equivalent to a par-
ticular multiple logistic regression model with unconstrained
parameters. An arbitrary network structure can always be
made to satisfy Condition 1 by adding arcs. Thus, we can
embed any Bayesian network model in a larger model (with
less independence assumptions) that satisfies Condition 1.

Test runs for the Naive Bayes case in [Wettig et al., 2002]
have shown that maximizing the conditional likelihood in
contrast to the usual practice of maximizing the joint (unsu-
pervised) likelihood is feasible and yields greatly improved
classification. Similar results are reported in [Greiner and
Zhou, 2002]. Our conclusions are also supported by theo-
retical analysis in [Ng and Jordan, 2001]. Only on very small
data sets we sometimes see that joint likelihood optimization
outperforms conditional likelihood, the reason apparently be-
ing that the conditional method is more inclined to over-
fitting. We conjecture that in such cases, rather than resorting
to maximizing the joint instead of the conditional likelihood,
it may be preferable to use a simpler model or simplify (i.e.
prune or restrict) the model at hand and still choose its param-
eters in a discriminative fashion. In our setting, this would
amount to model selection using the L-parametrization. This
is a subject of our future research.
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Classifier learning with supervised marginal likelihood. In
J. Breese and D. Koller, editors, Proceedings of the 17th In-
ternational Conference on Uncertainty in Artificial Intelligence
(UAI’01). Morgan Kaufmann Publishers, 2001.

[McLachlan, 1992] G.J. McLachlan. Discriminant Analysis and
Statistical Pattern Recognition. John Wiley & Sons, New York,
1992.

[Ng and Jordan, 2001] A.Y. Ng and M.I. Jordan. On discriminative
vs. generative classifiers: A comparison of logistic regression and
naive Bayes. Advances in Neural Information Processing Sys-
tems, 14:605–610, 2001.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1988.

[Wettig et al., 2002] H. Wettig, P. Grünwald, T. Roos, P. Myl-
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A Proofs
Proof of Theorem 3. We introduce some more notation. For
j ∈ {1, . . . , M}, let mj be the maximum number in
{0, . . . , M} such that Xmj

∈ Paj , Paj ⊆ Pamj
∪ {Xmj

}.
Such an mj exists by Condition 1. To see this, note that
the Xi ∈ Paj mentioned in Condition 1 must lie in the set
{X0, X1, . . . , Xm} (otherwise X0 ∈ Paj , X0 6∈ Pai, so
Paj 6⊆ Pai ∪ {Xi}, contradiction).

Condition 1 implies that paj is completely determined by
the pair (xmj

, pamj
). We can therefore introduce functions

Qj mapping (xmj
, pamj

) to the corresponding paj . Hence,
for all x = (x0, . . . , xM ′ ) and j ∈ {1, . . . , M} we have

paj = Qj(xmj
, pamj

). (10)

We introduce, for all i ∈ {0, . . . , M} and for each con-
figuration pai of Pai, a constant ci|pai

and define, for any
ΘL ∈ Θ

L,

θ
(c)
xi|pai

:= θL
xi|pai

+ ci|pai
−

∑

j:mj=i

cj|Qj (xi,pai). (11)

The parameters θ
(c)
xi|pai

constructed this way are combined to

a vector Θ(c) which is clearly a member of Θ
L.

Having introduced this notation, we now show that no mat-
ter how we choose the constants ci|pai

, for all ΘL and corre-
sponding Θ(c) we have SL(D; Θ(c)) = SL(D; ΘL).

We first show that, for all possible vectors x and the corre-
sponding parent configurations, no matter how the ci|pai

are
chosen, it holds that

M
∑

i=0

θ
(c)
xi|pai

=

M
∑

i=0

θL
xi|pai

+ c0|pa0
. (12)

To derive (12) we substitute all terms of
∑M

i=0 θ
(c)
xi|pai

by their
definition (11). Clearly, for all j ∈ {1, . . . , M}, there is ex-
actly one term of the form cj|paj

that appears in the sum with
a positive sign. Since for each j ∈ {1, . . . , M} there exists
exactly one i ∈ {0, . . . , M} with mj = i, it must be the case
that for all j ∈ {1, . . . , M}, a term of the form cj|Qj (xi,pai)

appears exactly once in the sum with a negative sign. By (10)
we have cj|Qj (xi,pai) = cj|paj

. Therefore all terms cj|paj
that

appear once with a positive sign also appear once with a neg-
ative sign. It follows that, except for c0|pa0

, all terms cj|paj

cancel. This establishes (12). By plugging in (12) into (6), it
follows that SL(D; Θ(c)) = SL(D; ΘL) for all D.

Now set, for all xi and pai,

θBxi|pai
= exp θ

(c)
xi|pai

. (13)

We show that we can determine the constants ci|pai
such that

for all i ∈ {0, . . . , M} and pai, the ’sum up to one’ constraint
is satisfied, i.e., we have

ni
∑

xi=1

θBxi|pai
= 1. (14)

We achieve this by sequentially determining values for ci|pai

in a particular order.
We need some additional terminology: we say ‘ci is deter-

mined’ if for all configurations pai of Pai, we have already
determined ci|pai

. We say ‘ci is undetermined’ if we have de-
termined ci|pai

for no configuration pai of Pai. We say ‘ci is
ready to be determined’ if ci is undetermined and at the same
time all cj with mj = i have been determined.

We note that as long as some ci with i ∈ {0, . . . , M} are
undetermined, there must exist ci′ that are ready to be de-
termined. To see this, first take any i ∈ {0, . . . , M} with
ci undetermined. Either ci itself is ready to be determined
(in which case we are done), or there exists j ∈ {1, . . .M}
with mj = i (and hence Xi ∈ Paj) such that cj is undeter-
mined. If cj is ready to be determined, we are done. Oth-
erwise we repeat the argument, move forward in B restricted
to {X0, . . . , XM} and (because B is acyclic) within M steps
surely find a cl that is ready to be determined.

We now describe an algorithm that sequentially assigns
values to ci|pai

such that (14) is satisfied. We start with all ci

undetermined and repeat the following steps:

WHILE there exists ci, i ∈ {0, . . . , M}, that is undetermined
DO

1. Pick the largest i such that ci is ready to be determined.

2. Set, for all configurations pai of Pai, ci|pai
such that

Pni

xi=1
θB

xi|pai
= 1 holds.

DONE
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The algorithm loops M + 1 times and then halts. Step 2 does
not affect the values of cj|paj

for any j, paj such that cj|paj

has already been determined. Therefore, after the algorithm
halts, (14) holds.

Let ΘL ∈ Θ
L. Each choice of constants ci|pai

determines
a corresponding vector Θ(c) with components given by (11).
This in turn determines a corresponding vector ΘB with com-
ponents given by (13). In Stage 2 we showed that we can take
the ci|pai

such that (14) holds. This is the choice of ci|pai

which we adopt. With this particular choice, ΘB indexes
a distribution in MB. By applying the log-transformation
to the components of ΘB we find that for any D of any
length, SB(D; ΘB) = SL(D; Θ(c)), where SB(D; ΘB) de-
notes the conditional log-likelihood of ΘB as given by sum-
ming the logarithm of (3). The result of Stage 1 now im-
plies that ΘB indexes the same conditional distribution as
ΘL. Since ΘL ∈ Θ

L was chosen arbitrarily, this shows that
ML ⊆ MB. Together with Theorem 1 this concludes the
proof.

Proof (sketch) of Theorem 4. Use the rightmost network in
Figure 1 with structure X0 → X2 ← X1. Let the data be
D = ((1, 1, 1), (1, 1, 2), (2, 2, 1), (2, 2, 2)) . Note that X0 and
X1 always have the same value. We first show that with this
data, there are four local, non-connected suprema of the con-
ditional likelihood.

We are interested in predicting the value of X0 given X1,
and X2. The parameter defining the distribution of X1 has no
effect on conditional predictions and we can ignore it. For the
remaining five parameters we use the following notation:

θ2 := P (X0 = 2),

θ2|1,1 := P (X2 = 2 | X0 = 1, X1 = 1),

θ2|1,2 := P (X2 = 2 | X0 = 1, X1 = 2),

θ2|2,1 := P (X2 = 2 | X0 = 2, X1 = 1),

θ2|2,2 := P (X2 = 2 | X0 = 2, X1 = 2). (15)

The conditional log-likelihood can be written as

SB(D; ΘB) = g(1− θ2, θ2|1,1, θ2|2,1) + g(θ2, θ2|2,2, θ2|1,2),
(16)

where

g(x, y, z) := f(x, y, z) + f(x, 1− y, 1− z), (17)

and
f(x, y, z) := ln

xy

xy + (1− x)z
. (18)

Figure 3 illustrates functions g(x, y, z) at x = 0.5. In (16)
each parameter except θ2 appears only once. Thus, for a fixed
θ2 we can maximize each term separately. ¿From Lemma 1
below it follows that the supremum of the log-likelihood with
θ2 fixed is ln(1− θ2) + ln(θ2), which achieves its maximum
value−2 ln 2 at θ2 = 0.5. Furthermore, the lemma shows that
the log-likelihood approaches its supremum when θ2|2,1 ∈
{0, 1}, θ2|1,2 ∈ {0, 1}, θ2|1,1 → θ2|2,1, and θ2|2,2 → θ2|1,2.

Setting y = 0.5 results in

sup
0≤z≤1

g(x, 0.5, z) = ln
x

2− x
< ln x. (19)
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Figure 3: Function g(x,y,z) given by (17) with x = 0.5.

Therefore setting either θ2|1,1 or θ2|2,2 to 0.5 results in
a smaller supremum of the log-likelihood than the above
choices. Consequently, the four suprema are separated by ar-
eas where the log-likelihood is smaller, i.e., the suprema are
local and not connected.

To conclude the proof we still need to address two is-
sues: (a) the four local suprema give the same conditional
log-likelihood −2 ln 2, and (b), they are suprema, not max-
ima (not achieved by any ΘB ∈ Θ

B). To deal with (a),
consider data D′ consisting of n1 repetitions of (1, 1, 1),
n2 repetitions of (1, 1, 2), n3 repetitions of (2, 2, 1) and
n4 repetitions of (2, 2, 2). By doing a slightly more in-
volved analysis, one can show that, for some choices of
n1, n2, n3, n4, the supervised log-likelihood still has four
suprema, but they have different likelihood values. To deal
with (b), let D′′ be equal to D′ but with four extra data vec-
tors (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2). If n1, n2, n3 and n4

are chosen large enough, the supervised likelihood for D′′ has
four maxima (rather than suprema), not all of which achieve
the same supervised likelihood. We omit further details.

Lemma 1. With 0 < x < 1 fixed and y and z both varying
between 0 and 1, the supremum of g(x, y, z) defined by (17)
is given by

sup
0≤y,z≤1

g(x, y, z) = ln(x). (20)

The function approaches its supremum when z ∈ {0, 1}, and
y → z. That is, limy↓0 g(x, y, 0) = limy↑1 g(x, y, 1) = ln x.

Proof. Differentiating twice wrt. z gives

∂2

∂2z
g(x, y, z) =

(1− x)2

(xy + (1− x)z)
2

+
(1− x)2

(x(1− y) + (1− x)(1− z))
2 , (21)

which is always positive and the function achieves its maxi-
mum values at z ∈ {0, 1}. At these two points derivating wrt.
y yields

∂

∂y
g(x, y, 0) =

x− 1

(1− y)(1− xy)
,

∂

∂y
g(x, y, 1) =

1− x

y(xy + 1− x)
. (22)

Since in the first case the derivative is always negative, and
in the second case the derivative is always positive, g(x, y, 0)
increases monotonically as y → 0, and g(x, y, 1) increases
monotonically as y → 1. In both cases the limiting value is
ln(x).
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